В этой игре принял участие и Эйнштейн. Вы, возможно, уже заметили, что Эйнштейн оказывался участником (если не центральным действующим лицом) почти всех событий в космологии за последнее столетие. В этой связи полезно проследить историю того, как долго Эйнштейн занимался переделкой уравнений своей общей теории поля, то вводя в них так называемую космологическую постоянную лямбда (Λ), то изменяя ее. Эйнштейн ставил своей целью сохранение описания стабильной (устойчивой) Вселенной и поэтому сам убрал лямбду из уравнений, когда обнаруженное Хабблом расширение сделало ее ненужной и в конечном итоге заставило Эйнштейна сдаться, то есть признать «подвижность» Вселенной.
Позднее, уже в наши дни, выяснилось, что космологический член, с помощью которого Эйнштейн пытался подправить уравнения, оказался ошибкой, неожиданно полезной для современной астрофизики, хотя и совершенно не в той роли, которую первоначально предполагал для нее сам Эйнштейн. В его полевых уравнениях этот член вводился для обозначения сил гравитационного отталкивания, которые должны были тщательно сбалансировать силы притяжения и тем самым сохранить статичность Вселенной. Однако предложенное в уравнениях Эйнштейна космологическое равновесие оказалось шатким и неустойчивым. Любое, даже самое незначительное изменение условий ее существования должно было бы приводить Вселенную к гибели. Состояние Вселенной стало напоминать положение стоящего на цыпочках. При одном легком толчке он просто мог бы упасть.
Но для Вселенной любое малое воздействие может привести к катастрофе. Ничтожное изменение значения лямбды в одну сторону привело бы ее к расширению с ускорением, а с другой стороны, небольшое сжатие приведет к тому, что все существующее (как и предполагал раньше Бентли), придет к полному коллапсу. Кажется, Эйнштейна не беспокоила эта деликатная проблема отсутствия стабильности, но Артур Эддингтон сразу понял связанные с ней сложности.
Эддингтон обратил внимание на результаты, полученные Весто Слайфером, и еще в 1923 г. начал размышлять о глубоком физическом смысле, связанном с величиной лямбды. Когда Хаббл только задумывался о возможности расширения Вселенной, Эддингтон уже считал, что роль космологической постоянной в этом более существенна. Обсуждая данную тему в своем докладе на собрании Международного астрономического союза в сентябре 1932 г. в Кембридже, он не только поддержал предложенные Жоржем Леметром решения уравнений Эйнштейна для расширяющейся Вселенной, но и доказывал возможность существования не равной нулю космологической постоянной. Позднее Эддингтон, описывая свою роль в истории этой эпохи, сравнивал себя с сыщиком: «…я напоминал детектива в погоне за преступником по имени космологическая постоянная. Я уже знаю о существовании преступника, но мне еще ничего не известно о его внешности (например, о том, какой у него рост и т. п.)… Первым делом я разыскиваю его следы на месте преступления. Поиск привел к следам или к тому, что выглядит как следы: разбеганию спиральных туманностей» {7} .
В отличие от Эйнштейна Эддингтон рассматривал лямбду-член в уравнениях не в качестве проблемы, а скорее в качестве решения проблемы, и предполагал, что именно эта константа характеризует силу, вызывающую ускорение за пределами границ измерений Хаббла. Он полагал, что такой эффект легко обнаружится, когда в диаграмму Хаббла будут добавлены данные по более далеким галактикам. Поскольку ускорение представляет собой изменение скорости во времени, Эддингтон понимал, что для выяснения сути задачи необходимо вернуться в прошлое Вселенной и погрузиться во все более удаленные от нас периоды ее истории. В его времена было сложно обсуждать вопрос об экспериментальных наблюдениях такого рода, поскольку тогда не могли измерять расстояния до объектов, лежащих далеко за пределами цефеид, выступавших в качестве единственных «космических линеек».
Эддингтон был блестящим ученым, но (как мы могли уже видеть на примере истории с отказом признавать существование черных дыр) имел склонность относиться к своим научным идеям и убеждениям с большой пристрастностью. Поэтому, когда все мировое астрономическое сообщество (включая Эйнштейна) окончательно смирилось с мыслью о том, что теория расширяющейся Вселенной не нуждается ни в какой константе лямбда, Эддингтон долго отказывался признать этот факт. В статье 1932 г., написанной совместно с де Ситтером, Эйнштейн сам вычеркнул из уравнений лямбду-член. При этом, впрочем, он оставил себе шанс на пересмотр этого решения в будущем, вписав в текст фразу о том, что «…возрастающая точность астрономических наблюдений может позволить нам в будущем определить знак и величину этого члена» {8} . Но при этом (несмотря на достигнутый консенсус и отказ от учета лямбды) для описания «новой», обнаруженной Хабблом расширяющейся Вселенной необходимо было ответить на целый ряд важных вопросов, относящихся к проблеме гравитации. Однако вопросы оставались даже при консенсусе о мире без лямбды-члена. Открытие Хаббла продемонстрировало, что расширение Вселенной преодолевает влияние гравитации. Но всегда ли гравитация имела современный вид? Сохранятся ли эти особенности в будущем? Как они выглядели в далеком прошлом?
Читать дальше
Конец ознакомительного отрывка
Купить книгу