Герман Смирнов - Под знаком необратимости (Очерки о теплоте)

Здесь есть возможность читать онлайн «Герман Смирнов - Под знаком необратимости (Очерки о теплоте)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М.,, Год выпуска: 1977, Издательство: Знание, Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Под знаком необратимости (Очерки о теплоте): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Под знаком необратимости (Очерки о теплоте)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Весь окружающий нас физический мир развивается и изменяется по законам необратимости. Благодаря необратимости превращаются в теплоту механическое, электрическое, световое и другие формы движения. И через необратимость термодинамика — учение о теплоте — пронизывает все без исключения разделы современной науки.
Автор в живой увлекательной форме показывает пути становления принципов термодинамики, судьбу ее творцов, рассказывает о проблемах, которые были разрешены этой наукой в прошлом и над которыми специалисты работают сейчас.
Брошюра рассчитана на широкий круг читателей.

Под знаком необратимости (Очерки о теплоте) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Под знаком необратимости (Очерки о теплоте)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эксергия — это та часть общей энергии тела, которая в данных условиях может быть превращена в работу. Эксергия учитывает не только параметры самого вещества или системы, но и параметры окружающей среды. Скажем, энергия одного килограмма воды, находящейся на поверхности океана, огромна, если считать ее по отношению к центру земли. Но превратить ее в работу невозможно: средний уровень Мирового океана аннулирует способность этого килограмма совершать работу. Вот другой пример: в баллоне, из которого выкачан воздух, нет никакой энергии. Однако эксергия его больше нуля: открыв клапан, мы можем создать поток воздуха внутрь баллона, поставить газовую турбинку на его пути и заставить окружающую среду совершать работу.

Если на улице температура 293 К, то газ с такой температурой имеет эксергию, равную нулю, хотя его энергия относительно абсолютного нуля довольно велика. А газ при 100 К, обладающий втрое меньшей энергией, имеет эксергию, отличную от нуля. Соединив с ним окружающую среду через идеальную тепловую машину, мы можем использовать эту разницу температур для получения механической работы. Теперь нетрудно понять, что сметливый сосед крал у простодушного баварского лавочника не энергию, как доказывал тот, а эксергию, работоспособность.

При любых изменениях в обратимом мире эксергия остается постоянной. Необратимые процессы — вот истинные «пожиратели эксергии», непрерывно уменьшающие ее запас. Это наводит на мысль, что между эксергией, которая уменьшается в необратимых процессах, и энтропией, которая в них увеличивается, есть какая-то связь. Такая связь действительно существует, но только в тех случаях, когда происходит возрастание энтропии вследствие необратимого процесса. Скажем, подводя обратимо теплоту к телу, мы увеличиваем его энтропию, но эксергия не меняется. Если же нагревать предмет необратимо — энтропия возрастает, а эксергия уменьшается. Следовательно, уменьшение эксергии связано не вообще с увеличением энтропии, а лишь с увеличением энтропии в необратимых процессах.

Понятие эксергии избавляет нас от необходимости каждый раз сравнивать реальный механизм с точно таким же и работающим в таких же условиях идеальным. Теперь достаточно эксергию на выходе из механизма разделить на эксергию на входе, чтобы получить КПД. Этот КПД для всех машин, в том числе и тепловых, меньше единицы, и чем он ближе к единице, тем меньше отличается механизм от идеального.

Основные источники потерь тепловой электростанции Силачом и Огнепоклонником - фото 7

Основные источники потерь тепловой электростанции Силачом и Огнепоклонником оцениваются по-разному. Так, считая только по ЭНЕРГИИ, Огнепоклонник полагает, что главный источник потерь на электростанции — конденсатор. Силач же, считая по ЭКСЕРГИИ, видит: главный источник потерь — котел. И Силач прав — именно в совершенствовании котлов, в повышении параметров пара — столбовой путь развития энергетики.

Эксергия вносит ясность в понимание работы тепловых машин, она реабилитирует некоторые части тепловых установок и находит истинных виновников потерь. Например, долгое время считалось, что главные потери паровой установки — это теплота, отдаваемая в конденсаторе охлаждающей воде. И действительно, в конденсатор уходит почти половина теплоты, полученной рабочим телом в котле. Котел, наоборот, считался самой экономичной частью установки: КПД, подсчитанный по энергии, получался 96–98 %. Но стоило проследить, что происходит с эксергией, и стало ясно: конденсатор надо реабилитировать, это одна из самых экономичных частей установки, в которой эксергия уменьшается всего на 3 %. И это понятно, температура в конденсаторе всего на несколько градусов выше температуры окружающей среды. Истинный же виновник потерь — котел.

В раздельном существовании топлива и кислорода запасено некоторое количество эксергии. Если провести реакцию окисления обратимо, с помощью идеального топливного элемента, мы не уменьшим этого первоначального количества эксергии. Если же мы сожжем топливо, то эксергия уменьшится. Насколько? Это зависит от температуры получившихся газов. В топке котла температура бушующего факела достигает 1500–1800 °C, а температура пара перед турбинами в лучшем случае достигает всего 600 °C. Теплообмен с перепадом в 900— 1200 °C — вот второй источник потерь в котле. А в общей сложности котел «пожирает» около половины эксергии. Теперь мы новыми глазами можем взглянуть на тепловые машины. Эксергия показывает нам, что всюду, где существуют большие перепады температур, таятся источники потерь: в котлах, в цилиндрах двигателей внутреннего сгорания, между нагретыми газами и охлаждаемыми водой стенками цилиндра, в камерах сгорания газовых турбин. Теперь нам нетрудно понять, сколь расточительно и убыточно печное отопление: при сгорании дров температура 800 °C, а в комнате надо поддерживать 25 °C. Не удивительно, что тепловые насосы имеют немалые перспективы на будущее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Под знаком необратимости (Очерки о теплоте)»

Представляем Вашему вниманию похожие книги на «Под знаком необратимости (Очерки о теплоте)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Под знаком необратимости (Очерки о теплоте)»

Обсуждение, отзывы о книге «Под знаком необратимости (Очерки о теплоте)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x