Мало того, з цієї схеми стала випливати гарна симетрія між кварками й частинками на кшталт електронів і мюонів, які всі могли існувати у вигляді пар, зв’язаних за допомогою слабкої сили. Електрон парувався б із власним нейтрино, так само як і мюон. Також пари утворювали б верхній кварк із нижнім та чарівний кварк із дивним. W -частинки, взаємодіючи з однією з частинок у кожній парі, перетворювали б її на іншу частинку з цієї пари.
Утім, жодне з цих тверджень не вирішувало головних проблем сильної взаємодії між кварками. Чому ніхто ніколи не спостерігав жодного кварка? І, якщо сильна взаємодія описується калібрувальною теорією з глюонами в ролі калібрувальних частинок, як так сталося, що ніхто ніколи не спостерігав жодного глюона? І якщо глюони безмасові, як сильна сила може бути близькодійною?
Для декого ці проблеми залишалися свідченням того, що квантова теорія поля була хибним підходом до розуміння сильної сили. Фрімен Дайсон, який зіграв настільки важливу роль у розробці першої успішної квантової теорії поля, а саме квантової електродинаміки, стверджував, описуючи сильну взаємодію: «Правильна теорія буде знайдена не раніше, ніж за сто років».
Одним із тих, хто був переконаний у приреченості квантової теорії поля, був блискучий молодий фізик-теоретик Девід Ґросс. Учень Джефрі Чю, винахідника бутстрап-моделі ядерної демократії, у якій елементарні частинки були лише ілюзією, що маскує структуру, у якій реальні лише симетрії, а не частинки, Ґросс був усерйоз налаштований на остаточне знищення квантової теорії поля.
Згадаймо, що навіть 1965 року, коли Річард Фейнман одержав Нобелівську премію, побутувало відчуття, що розроблена ним та іншими процедура позбуття нескінченностей у квантовій теорії поля була фокусом; що на малих масштабах із картиною, запропонованою квантовою теорією поля, щось було фундаментально не так.
У 1950-х роках російський фізик Лев Ландау показав, що електричний заряд електрона залежить від масштабу, на якому він вимірюється. З нікуди вигулькують віртуальні частинки, тож електрони та всі інші елементарні частинки перебувають в оточенні хмари пар віртуальних частинок й античастинок. Ці пари екранують заряд аналогічно до екранування заряду в діелектриках. Позитивно заряджені віртуальні частинки схильні щільно оточувати негативний заряд, тож на відстані фізичні впливи початкового негативного заряду зменшуються.
Згідно з Ландау, це означало, що чим ближче ви підбираєтеся до електрона, тим більшим виглядатиме його дійсний заряд . Якщо заряд електрона дорівнює певному конкретному значенню при вимірюванні з великих відстаней, як ми це й робимо, це означає, що «чистий» заряд електрона, себто заряд на елементарній частинці, узятій без усього цього нескінченного вбрання з пар «частинка – античастинка», які оточують його на будь-яких маленьких масштабах, має бути нескінченним. У цій картині явно завелася гнилизна.
Ґросс працював під впливом не лише свого наукового керівника, а й думок, які на той час домінували, головним чином аргументів Гелл-Манна, котрий наприкінці 1950-х та на початку 1960-х років домінував у теоретичній фізиці елементарних частинок. Гелл-Манн обстоював використання алгебраїчних співвідношень, що постають із розмірковувань про теорію поля, після чого теорію поля треба було відкинути, а співвідношення лишити. Один із дуже характерних для нього описів звучав так: «Цей процес можна порівняти з методом, подеколи використовуваним у французькій кухні: шмат м’яса фазана готують поміж двома скибочками телятини, які після цього викидають».
Тож можна було виділити властивості кварків, корисні для передбачень, а тоді ігнорувати власне можливе існування кварків. Одначе Ґросс почав розчаровуватися в простому використанні ідей, пов’язаних із глобальними симетріями й алгебрами, та прагнув вивчати динаміку, яка дійсно могла б описати фізичні процеси, що відбуваються всередині сильно взаємодійних частинок. Спираючись на попередню роботу Джеймса Бьйоркена, Ґросс та його напарник Кертіс Калан показали, що заряджена частинка, судячи з усього, розташована всередині протонів і нейтронів, повинна мати спін ½, ідентичний спіну електронів. Пізніше, уже з іншими напарниками, Ґросс показав, що аналогічний аналіз виміряного в ЦЕРН розсіювання нейтрино на протонах та нейтронах засвідчив, що ці компоненти виглядають точно як запропоновані Гелл-Манном кварки.
Читать дальше