Аналогія з надпровідністю, уперше досліджена Намбу, корисна, проте значною мірою з причин, відмінних від тих, які свого часу уявляли собі Намбу та інші. Заднім числом відповідь може здатися майже самоочевидною, точно так само, як маленькі натяки на справжнього вбивцю у творах Агати Крісті стають очевидними після його викриття. Проте, як і герої її детективів, ми також натрапляємо на купу помилкових слідів, і ці глухі кути роблять підсумкове рішення ще більш несподіваним.
Є всі підстави співпереживати тогочасним спантеличеним фізикам елементарних частинок. Запускали нові прискорювачі, і щоразу, як був досягнутий новий поріг енергії зіткнення, породжувалися нові сильно взаємодійні брати нейтронів і протонів. Цей процес видавався нескінченним. Від такого багатства розбігалися очі, і як теоретики, так і експериментатори були вмотивовані зосередитися на таємниці сильної ядерної сили, яка, здавалося, кидала найсерйозніший виклик наявній теорії.
Здавалося, що для мікроскопічного світу характерна потенційно нескінченна кількість елементарних частинок із дедалі більшими масами. Проте це суперечило всім ідеям квантової теорії поля – вдалої моделі, яка надала чудове розуміння релятивістської квантової поведінки електронів і фотонів.
Розробку популярної й впливової програми з розв’язання цієї проблеми очолював фізик із Берклі Джефрі Чю. Чю відмовився від ідеї існування якихось дійсно фундаментальних частинок, а також від будь-яких мікроскопічних квантових теорій, що включали точкоподібні частинки й пов’язані з ними квантові поля. Натомість він виходив із того, що всі спостережувані сильно взаємодійні частинки були не точкоподібними, а комплексними, зв’язаними станами інших частинок. Це означало, що ніякої редукції до первинних фундаментальних об’єктів бути не може. У цій дзеноподібній картині, яка настільки личила Берклі зразка 1960-х років, усі частинки вважали складеними з інших частинок – так звана бутстрап-модель, у якій жодні елементарні частинки не вважали первинними чи особливими. Саме тому цей підхід також дістав назву ядерної демократії.
І хоча він полонив багатьох фізиків, які розчарувались у квантовій теорії поля як інструменті для опису будь-яких взаємодій окрім найпростіших, між електронами й фотонами, жменька науковців була достатньо вражена успіхом квантової електродинаміки, щоби спробувати зімітувати її в теорії сильної ядерної сили – яка згодом стала відома як сильна взаємодія – за образом і подобою підходу, який обстоювали Янг і Міллз.
Один із цих фізиків, Д. Д. Сакураї, опублікував 1960 року статтю з вельми амбітною назвою «Теорія сильних взаємодій». Сакураї серйозно сприйняв пропозицію Янга й Міллза та спробував точно визначити, які фотоноподібні частинки можуть переносити сильну силу між протонами, нейтронами й іншими нововідкритими частинками. Оскільки сильна взаємодія була близькодійною, охоплюючи в найкращому випадку лише розмір ядра, здавалося, що частинки, необхідні для перенесення цієї сили, мають бути масивними, що суперечило будь-якій строгій калібрувальній симетрії. Проте, за винятком цього, вони повинні мати багато властивостей, аналогічних властивостям фотонів, і мати спін 1, або так званий векторний спін. З огляду на це нові передбачені частинки були названі масивними векторними мезонами. Вони мали зв’язуватися з різноманітними потоками сильно взаємодійних частинок аналогічно тому, як фотони зв’язуються з потоками електрично заряджених частинок.
Частинки із загальними властивостями передбачених Сакураї векторних мезонів були експериментально відкриті впродовж наступних двох років, тож ідея, що вони якимось чином можуть розкрити секрет сильної взаємодії, була використана для розплутування складних взаємодій між нуклеонами та іншими частинками.
Відреагувавши на думку, що за сильною взаємодією може стояти деякий різновид янг-міллзівської симетрії, Маррі Гелл-Манн розробив вишукану схему симетрії, яку в дзеноподібній манері охрестив Восьмеричним Шляхом. Вона не лише давала можливість класифікувати вісім різних векторних мезонів, а ще й передбачала існування досі не спостережуваних сильно взаємодійних частинок. Ідея, що ці свіжозапропоновані симетрії природи можуть допомогти навести лад у тому, що здавалося безнадійно хаотичним звіринцем елементарних частинок, була настільки захоплива, що, коли пізніше відкрили частинку, яку передбачив Гелл-Манн, йому було присуджено Нобелівську премію.
Читать дальше