Кажуть, що «близько» враховується лише під час кидання підків чи ручних гранат, проте близькість мас протона й нейтрона рахується дуже й дуже сильно. Це одна з ключових причин нашого з вами існування.
1896 року Анрі Беккерель відкрив радіоактивність урану, а вже через три роки Ернест Резерфорд виявив, що радіоактивність буває двох типів, які він позначив альфа-й бета-променями. Іще через рік було відкрито гамма-промені, і 1903-го Резерфорд підтвердив, що вони є новою формою радіації, давши їм їхню назву. 1900 року Беккерель визначив, що промені за бета-розпаду насправді є електронами, які, як ми знаємо нині, виникають у результаті розпаду нейтрона.
За бета-розпаду нейтрон розділяється на протон та електрон, що, як буде показано нижче, було б неможливо, якби нейтрон не був трохи важчим за протон. Проте дивним у розпаді нейтрона є не те, що він узагалі відбувається, а те, чому він триває так довго. Зазвичай розпад нестабільних елементарних частинок відбувається вже через мільйонні чи мільярдні частки секунди. Ізольовані нейтрони в середньому живуть понад десять хвилин.
Однією з головних причин, чому нейтрони живуть так довго, є те, що маса нейтрона лише трохи більша за суму мас протона й електрона. Таким чином, за рахунок маси спокою нейтрона він має таку кількість енергії, якої ледве вистачає на розпад на ці частинки зі збереженням енергії (іншою причиною є те, що нейтрон розпадається не лише на протон плюс електрон, а на три частинки… залишайтеся з нами!).
Хоча на атомній часовій шкалі десять хвилин видаються вічністю, це дуже малопорівняно з людським життям або життям атомів на землі. Повертаючись до загадки, наведеної на початку цього розділу: чому так? Як ми можемо складатися переважно з нейтронів, якщо вони розпадаються ще до першої рекламної паузи в 30-хвилинному телешоу?
Знов-таки відповідь криється в крайній близькості мас нейтрона й протона. Вільний нейтрон розпадається приблизно за десять хвилин. Проте розглянемо нейтрон, зв’язаний усередині атомного ядра. Зв’язаність означає, що для його вибивання з ядра потрібна енергія. Проте це означає, що, зв’язуючись із ядром, він спершу втрачає енергію. Але Ейнштейн каже нам, що сумарна енергія масивної частинки пропорційна її масі за формулою E = mc 2. Це означає, що, якщо нейтрон втрачає енергію під час зв’язування з ядром, його маса зменшується. Проте оскільки його маса в ізольованому стані лише на дещицю більша за суму мас протона й електрона, то, втративши масу, він уже не має достатньо енергії на розпад на протон і електрон. Якби він захотів розпастися на протон, він мав би або вивільнити достатню кількість енергії, щоб ще й вибити протон із ядра, якої, беручи до уваги стандартні енергії зв’язування ядер, він не має, або ж вивільнити достатню кількість енергії, щоб новий протон залишився в новому стабільному ядрі. Оскільки нове ядро було б ядром іншого елемента, додавання додаткового позитивного заряду до ядра також зазвичай потребує більше енергії, ніж є в наявності при розпаді нейтрона. Як наслідок нейтрон і більшість атомних ядер, що містять нейтрони, лишаються стабільними.
Уся ця стабільність ядер, з яких складається все, що ми бачимо, зокрема більшість атомів нашого тіла, є випадковим наслідком того факту, що маси нейтрона й протона відрізняються лише на 0,1 %, тож навіть маленька зміна маси першого з включенням у ядро означає, що він більше не може розпастися на останній. Ось що я дізнався від Томмі Ґолда.
Коли я про це думаю, досі вражаюся. Існування складної матерії, періодичної таблиці елементів, усього, що ми бачимо, від далеких зір до клавіатури, на якій я друкую цей текст, – залежить від такого видатного збігу. Чому? Чи випадковість це, чи закони фізики з якоїсь невідомої причини цього вимагають? Запитання на кшталт цього спонукають нас, фізиків, шукати можливі відповіді ще глибше.
Відкриття нейтрона й подальші спостереження його розпаду зробили більше, ніж просто ввели в субатомний зоопарк нову частинку. Вони дали привід думати, що на мікроскопічно малих відстанях на рівні атомних ядер можуть порушуватися дві найфундаментальніші властивості природи: закон збереження енергії й закон збереження імпульсу.
Майже за двадцять років до відкриття нейтрона Джеймс Чедвік спостерігав дещо дивне, пов’язане з бета-променями; ще задовго до того, як він чи хтось інший знав, що вони спричинені розпадами нейтронів. Спектр енергії, яку несуть випромінені в результаті розпаду нейтрона електрони, неперервний і змінюється в діапазоні від фактично нульової енергії аж до максимальної енергії, яка залежить від енергії, наявної після розпаду нейтрона; у випадку вільного нейтрона ця максимальна енергія становить різницю між масою нейтрона й сумою мас протона та електрона.
Читать дальше