Однако если закрыть одну лазейку, то открывается другая. Проверка Белла основывается на построении статистической картины посредством повторяющихся опытов, поэтому она не сработает, если ваше оборудование захватывает недостаточное количество фотонов. Другие эксперименты закрыли эту лазейку обнаружения, но отдаление детекторов друг от друга только усугубило проблему, поскольку повысило вероятность того, что часть фотонов потеряется по дороге. Так что отдаление детекторов друг от друга для закрытия лазейки местоположения расширило другую лазейку, связанную с обнаружением.
Тест команды Хансона был первым экспериментом, устранившим одновременно и лазейку обнаружения, и лазейку местоположения.
В этом эксперименте Алиса и Боб сидели в двух лабораториях, которые разделяли 1,3 километра. Свету требуется 4,27 микросекунды, чтобы пройти это расстояние, а измерение занимало только 3,7 микросекунды, так что дальность была достаточной, чтобы закрыть лазейку местоположения.
В каждой лаборатории был алмаз, содержащий электрон, который обладал особым свойством – спином. Члены команды ударяли по алмазам микроволновыми импульсами, создаваемыми случайным образом, что заставляло каждый из них испускать фотон, запутанный со спином электрона. Эти фотоны затем отправляли в следующий пункт, точку C между Алисой и Бобом, где третий детектор отмечал время их прибытия.
Если бы фотоны пришли от Алисы и Боба точно в одно и то же время, то передали бы свою запутанность спинам в обоих алмазах, и электроны были бы запутаны вдоль прямой, соединяющей две лаборатории, – это как раз то, что нам нужно для проверки неравенств Белла. К тому же спины электронов постоянно отслеживали, а уровень качества детекторов позволял закрыть лазейку обнаружения.
Но недостаток эксперимента заключается в том, что два фотона очень редко приходят в точку C одновременно – лишь несколько совпадений приходов в час. Команда провела 245 измерений, так что ожидание было долгим. Результат был однозначным: в лабораториях были обнаружены спины с намного более высокой корреляцией, чем позволил бы локальный реализм. Таинственный мир квантовой механики – это наш мир (см. рис. 2.4).
Рис. 2.4. Первый свободный от лазеек эксперимент, проведенный для доказательства квантовой таинственности.
Остается одна лазейка, за которую могут зацепиться локальные реалисты, но исключить ее не смогут никакие эксперименты в принципе. Что если между случайными микроволновыми генераторами и детекторами имеется нечто вроде связи? Тогда возможно, что Алиса и Боб считают себя свободными в выборе настроек своего оборудования, но скрытые параметры интерферируют с их выбором и сводят на нет проверку неравенств Белла.
Команда Хансона отмечает, что это возможно, но также предполагает, что не в данном случае. В других опытах предлагается создание случайных чисел на основе фотонов, прилетающих от далеких квазаров, что приводит к промежуткам в миллиарды световых лет.
Ничего из перечисленного в конечном счете не помогает. Предположим, что Вселенная каким-то образом полностью предопределена и порхание каждого фотона неизменно, словно высечено на камне c незапамятных времен. В этом случае ни у кого никогда не было бы выбора, так что это не то, о чем экспериментаторам реально стоит волноваться: если Вселенная предопределена, полное отсутствие свободы означает, что у нас есть заботы поважнее.
Что бы Эйнштейн подумал об этих результатах? К сожалению, он умер до того, как Белл представил свои неравенства, так что мы не узнаем, изменило ли бы дальнейшее развитие событий его мнение, но возможно, Эйнштейн бы восхитился теми действиями, которые совершили люди, чтобы доказать его неправоту.
Где эта свободная от лазеек проверка оставляет нас?
Эта свободная от лазеек проверка квантовой таинственности вводит нас в философскую дилемму. Неужели у нас нет свободной воли и что-то предопределяет, какие измерения мы проведем? Это не лучший вариант. Реальны ли свойства квантовых частиц и, следовательно, реально ли вообще все или существует только как результат нашего восприятия? Такая точка зрения более популярна, но вряд ли мы далеко с ней продвинемся.
Или действительно существует воздействие, распространяющееся быстрее света? В 2008 году швейцарский физик Николас Гизин и его коллеги из Женевского университета (Швейцария) показали, что при соблюдении реальности и свободы скорость переноса квантовых состояний между запутанными фотонами, удерживаемыми в двух деревнях на расстоянии в 18 километров, будет более чем в 10 миллионов раз выше скорости света.
Читать дальше