На основе состава Солнца — количества содержащихся в нем тяжелых элементов, определенного при помощи спектроскопических измерений, — специалисты по физике Солнца считают наше светило внуком первых звезд Вселенной, звездой третьего поколения. А вот в вопросе о том, где первоначально оно сформировалось, остается много неясностей. Один из кандидатов, которые изучаются в настоящее время, — область, известная как М 67, расположенная примерно в 3000 световых лет от нас и содержащая скопление звезд, схожих, судя по всему, с Солнцем по химическому составу, что может свидетельствовать о близком семейном родстве. Проблема, решения которой до сих пор нет, — объяснить, как Солнце и планеты Солнечной системы (или протопланетный диск, из которого эти планеты должны были впоследствии сформироваться) могли извергнуться из этих отдаленных «звездных яслей» и мигрировать в наши края. При этом некоторые исследования потенциальных траекторий указывают, что шансов на то, что именно М 67 окажется местом рождения Солнца, практически нет, тогда как другие, с привлечением различных предположений, выдают более обнадеживающие результаты 15.
С несколько большей уверенностью мы можем сказать, что примерно 4,7 млрд лет назад ударная волна какой-то сверхновой, вероятно, пропахала облако, содержавшее водород, гелий и небольшие количества более сложных атомов; она сжала часть облака, которая став более плотной, чем ее окружение, начала сильнее притягивать все вокруг и втягивать в себя вещество. Следующие несколько сотен тысяч лет эта область газового облака продолжала сжиматься, вращаясь поначалу медленно, а затем быстрее, подобно грациозной фигуристке, прижимающей к себе руки при вращении. И как вращающаяся фигуристка испытывает на себе действие центробежной силы (которая растягивает в стороны детали ее костюма), так и вращающееся облако, которое расправило и сплюснуло свои внешние области и превратилось во вращающийся диск, окружающий небольшую сферическую область в его центре. Затем, в течение следующих 50-100 млн лет, газовое облако демонстрировало медленное и плавное исполнение гравитационного энтропийного тустепа, о котором говорилось в главе 3: гравитация сжимала сферическое ядро, которое становилось все горячее и плотнее, тогда как окружающее вещество остывало и становилось менее плотным. Энтропия ядра снижалась; энтропия внешней части отвечала на это снижение более чем компенсирующим повышением. В конечном итоге температура и плотность ядра преодолели порог, необходимый для запуска ядерного синтеза.
Так родилось Солнце.
В следующие несколько миллионов лет обломки, оставшиеся от формирования Солнца и суммарно составлявшие всего лишь несколько десятых долей процента от первоначального вращающегося диска, образовали множество гравитационных «снежных комьев» и соединились затем в планеты Солнечной системы. Более легкие и летучие вещества (такие как водород и гелий, а также метан, аммиак и вода, которые были бы разрушены интенсивным излучением Солнца) аккумулировались преимущественно в более прохладных внешних областях Солнечной системы, где образовали газовые гиганты — Юпитер, Сатурн, Уран и Нептун. Более тяжелые и устойчивые компоненты (такие как железо, никель и алюминий, способные лучше противостоять более горячей среде ближе к Солнцу) соединились в менее крупные силикатные, то есть каменные, внутренние планеты — Меркурий, Венеру, Землю и Марс. Будучи куда меньше и легче Солнца, планеты способны удерживать собственный скромный вес за счет изначально свойственного их атомам сопротивления сжатию. Температура ядра и давление внутри планет поднялись, но нигде даже близко не подошли к уровню, необходимому для запуска ядерного синтеза, в результате чего на планетах возникла относительно умеренная среда, за которую жизнь — наверняка наша форма жизни и, возможно, вся жизнь во Вселенной — должна быть Вселенной очень и очень благодарна.
Юная Земля
Первые полмиллиарда лет существования Земли называют гадейским эоном16 в честь греческого бога подземного царства, ассоциируя Аида (Гадеса) с адской эпохой беснующихся вулканов, потоков расплавленных горных пород и густых токсичных паров серы и цианида. Но теперь некоторые ученые подозревают, что в качестве законодателя мод для юной Земли Посейдон, вполне возможно, подошел бы лучше. Аргументом в пользу этого радикального и пока довольно спорного пересмотра служат всего лишь крохотные пылинки. Хотя образцов горных пород с тех давних времен у нас нет, исследователи сумели распознать древние прозрачные пылинки — цирконовые кристаллы, которые сформировались, когда расплавленная лава юной Земли остыла и затвердела. Цирконовые кристаллы, как выясняется, играют решающую роль в понимании раннего развития Земли, потому что они не только практически неуничтожимы и способны выдержать миллиарды лет геологических пертурбаций, но и работают как миниатюрные капсулы времени. При формировании цирконовые кристаллы захватывают из окружающей среды образцы молекул, которые мы можем датировать стандартным методом по радиоактивным изотопам. Тщательный анализ посторонних примесей в цирконовых кристаллах позволяет представить условия на архаичной Земле.
Читать дальше
Конец ознакомительного отрывка
Купить книгу