Чтобы лучше понять противопоставление различимого и неразличимого, рассмотрим две монеты. Если мы подбросим каждую из них и будем считать различимыми, то возможные микросостояния системы из этих монет после их падения будут следующими: (О 1, О 2), (О 1, Р 2), (Р 1, О 2) и (P 1, P 2), где О = орел, Р = решка, а номера обозначают монету 1 и монету 2. Есть четыре различных микросостояния. Однако, если мы не будем нумеровать монеты — то есть сделаем их неразличимыми, — то возможными микросостояниями будут (О, О), (О, Р) и (Р, Р), поскольку теперь (О 1, Р 2), (Р 1, О 2) — это одно и то же микросостояние.
На самом деле монеты любого достоинства не являются настолько уж неотличимыми; хотя две монеты могут выглядеть очень похоже, всегда будет некоторая отличительная характеристика, придающая правильному методу «подсчета микросостояний» прежний вид. С другой стороны, микроскопические частицы, такие как атомы, фотоны, электроны и т. д., на самом деле неотличимы друг от друга, и поэтому требуют последний, только что описанный вариант метода подсчета микросостояний, пусть и намного более изощренный.
Именно Бозе ввел такой подход для фотонов, тем самым дав начало тому, что со временем станут называть квантовой статистикой . В 1905 году Эйнштейн защищал определенную эквивалентность света и атомов, в основном заключающуюся в том, что свет — это некая частица (фотон), и атом — это тоже некая частица [200]. Примерно двадцать лет спустя Эйнштейн был готов распространить эту эквивалентность дальше, применив метод Бозе, использованный для света, к атомам идеального газа, и этим он показал, что кажущийся безобидным метод Бозе привел к серьезным физическим последствиям и для атомов [201]. Он явно выразил свои чувства по этому поводу:
«Если сделанный Бозе вывод формулы излучения Планка воспринимать всерьез, то тогда нельзя оставить без внимания (мою) теорию идеального газа; поскольку ее оправдывает рассмотрение излучения (света) как квантового газа, и тогда аналогия между квантовым газом (светом) и газом из молекул, должно быть, является полной».
Эйнштейн написал три статьи, касающиеся квантовой теории идеального одноатомного газа. В первой из этих статей (представленной Прусской академии наук всего лишь через восемь дней после того, как Бозе прислал статью для публикации, и опубликованной позднее, в 1924 году) Эйнштейн с успехом применил новый метод Бозе к идеальному газу [202], получив выражения для важных термодинамических величин, и проиллюстрировал различие между своей новой теорией и основанной на классической механике. Главным результатом этой статьи является эквивалентность между светом и атомами, которую она начала устанавливать. Вторая статья, которую опубликовали в 1925 году, из всех трех имеет наибольшее значение. Здесь Эйнштейн прямо обращается к неразличимости , присущей методу Бозе, которую сам Бозе никогда не упоминал. Мы видим, что концепция неразличимости, или «потери статистической независимости», как ее тогда называли, вызвала большие волнения в физическом сообществе. Эйнштейн говорил:
«Сторона теории излучения Бозе и моего аналога для идеальных газов, которые критиковались господином Эренфестом и другими коллегами, состоит в том, что в этих теориях кванты, или молекулы, не считаются (различимыми) сущностями; этот вопрос явно не поднимался в наших работах. И это абсолютно верно».
Эйнштейн не делал каких-либо оговорок по поводу неотъемлемой неразличимости. Он просто продолжил в подробностях перечислять отличия между новой теорией и подходом, использующим классическую механику, и привел модифицированную формулу для числа микросостояний неразличимых частиц, которую используют и по сей день. Далее он признал, что есть реальные физические следствия, вытекающие из этой неразличимости: «То есть формула (для числа микросостояний) косвенно выражает определенную гипотезу, касающуюся взаимного, таинственного на данный момент типа влияния молекул друг на друга». Сейчас мы знаем, что это таинственное поведение — всего-навсего одно из многих у микрочастиц.
Другой впечатляющий момент второй статьи Эйнштейна — предсказание очень необычного фазового перехода, происходящего с идеальным квантовым газом. Эйнштейн описал это явление в письме к Паулю Эренфесту (1880–1933): «При определенной температуре молекулы конденсируются без помощи каких-либо сил притяжения, то есть они скапливаются у нулевой скорости».
Читать дальше
Конец ознакомительного отрывка
Купить книгу