Он придерживался идеи, что кванты энергии были математическим артефактом, и надеялся, что будущие усовершенствования его теории приведут назад, к «старой доброй физике» (классической физике) с менее радикальными результатами. Он, как и почти все остальные, предпочел концентрировать внимание на замечательной точности закона излучения Планка , а не на раздражающих квантах энергии, существование которых он подразумевал. Прошло восемь лет с момента, когда Планк впервые представил свою квантовую теорию дискретной энергии, и до момента, когда он смог окончательно признать, что она излагала фундаментальную природу энергии:
«…имеется определенный порог: резонатор совсем не отвечает на очень слабые возбуждения; если он отвечает на более сильные, то только так, что энергия является целым кратным элемента энергии h ν, так что мгновенное значение энергии всегда представляет собой такое целое кратное».
В то время как Планк и другие, возможно, колебались в признании квантов энергии, один человек принял их сразу.
Глава 14
Световые кванты
Частицы и волны: начало
В 1905 году, когда ему было двадцать шесть лет, Эйнштейн опубликовал четыре крупные статьи и закончил свою докторскую диссертацию. Каждая из этих статей была революционной и впоследствии изменила физику навсегда. Однако только первую из них, «Об одной эвристической точке зрения, касающейся возникновения и превращения света», Эйнштейн называл «очень революционной» [180]— на самом деле это был единственный раз, когда он сказал такое о какой-либо своей работе — и она, в частности, принесет ему Нобелевскую премию в 1921 году [181].
Действительно, представление Эйнштейна о свете было очень революционным, и только почти через двадцать лет его аккуратно включили в физику. В отличие от Планка, Эйнштейну было удобно использовать статистические подходы (такие как кинетическая теория или статистическая механика) для решения физических проблем. На самом деле Эйнштейн потратил значительное время на эти методы.
В цикле из трех публикаций между 1902 и 1904 годами Эйнштейн независимо включил некоторые из идей статистической механики, которые уже были сформулированы раньше Больцманом и Гиббсом. Видимо, Эйнштейн был в некоторой степени знаком с работами Больцмана, но, несомненно, вообще не знал трудов Гиббса. Кажется, что Эйнштейн почерпнул знания о работах Больцмана из «Лекций по теории газов», двухтомного труда, изданного в 1896 и 1898 годах. Это факт вызывает сожаление, поскольку данная работа не должна была быть обзором предыдущей работы Больцмана. В частности, метод сочетаний Больцмана, разработанный в 1877 году, который Планк использовал при получении квантов энергии, упомянут лишь мимоходом, а читателя (наверняка запутавшегося) отсылают к исходному источнику, который, кажется, Эйнштейн не смог найти.
Более того, хотя Больцман был выдающимся лектором, его труды были часто излишне длинными и малопонятными, а основные выводы часто прятались в лесу вычислений. Максвелл говорил о рукописях Больцмана: «Изучая Больцмана, я не мог его понять. Он не мог понять меня из-за моей краткости, а его длинные рассуждения были и остаются таким же серьезным препятствием для меня».
Возможно это отсутствие близости пошло на пользу Эйнштейну, поскольку дало ему возможность разработать статистическую механику с нуля, поистине построив ее своими руками в первые годы его занятий физикой. Как потом стало ясно, подход Эйнштейна к изучению квантов, или квантовая теория, был по своей сути статистической механикой, и методы, разработанные им в годы становления, сослужили ему добрую службу в его стремлениях в течение более чем двадцати лет, особенно в усилиях по изучению природы света.
Как это было в работах Планка, в статье, написанной Эйнштейном в 1905 году, энтропия также играла важную роль. Эйнштейн был заинтересован в вычислении энтропии системы, состоящей из света, находящегося в ящике с объемом V 0. Хотя может показаться странным рассматривать ящик, полный света, сама эта система не так сильно отличается от других, которые мы обсуждали, вроде ящика (или воздушного шарика) с атомами газа.
Начав с уравнения (изначально выведенного Вином) и используя закон излучения Вина (не Планка), Эйнштейн получил явное выражение для энтропии света в ящике, S 0. Затем он перешел к рассмотрению энтропии, возникающей при заключении света в меньший объем V ( под-объем ) внутри ящика. Он нашел разность этих энтропий:
Читать дальше
Конец ознакомительного отрывка
Купить книгу