Любой, кто хоть раз поднимался по лестнице, уже знаком с наклонной плоскостью, но лестница — чуть более необычная ее версия. При помощи лестницы вы можете перемещаться с одной высоты на другую с меньшим усилием, или, что важнее, затрачивая меньшую силу. Вот ее основная цель. То же самое происходит и когда вы используете наклонную плоскость, чтобы переместить объект снизу вверх. Теперь, когда требуется меньше силы, объекты, которые было невозможно сдвинуть с места, перемещаются легко, а те, которые перемещались с трудом, — очень легко. Но есть и ловушка: вы должны будете переместить объект дальше, чем прежде. То есть если вы хотите использовать наклонную плоскость, чтобы с меньшим усилием переместить какой-либо объект (а кто не хотел бы?), то вы должны переместить объект на большее расстояние, чтобы добраться до желаемой высоты, чем если бы вы двигались снизу вверх. Вероятно, вам и так это известно, если вам доводилось пользоваться лестницей.
Сравните длину всей лестницы, по которой вы поднимаетесь, с фактической высотой, которую вы преодолели от начала пути. Эта высота всегда меньше расстояния, пройденного по лестнице. Другими словами, большее расстояние — цена за меньшую силу, прилагаемую для подъема. Если же вы решите подняться на аналогичную высоту (прямо снизу), вы точно взберетесь быстрее, однако потратите значительно больше сил. Поэтому у нас в домах ступенчатые лестницы, а не приставные.
Таким образом, наклонная плоскость не уникальна: меньшие затраты энергии с одной стороны требуют прохождения большего расстояния с другой — это объединяет все шесть простых механизмов.
Сила, расстояние и работа
Итак, мы видим связь между необходимой силой и пройденным расстоянием при подъеме на определенную высоту с помощью наклонной плоскости. Давайте уточним этот момент: сила, необходимая для перемещения объекта по наклонной плоскости (или лестнице), меньше силы, требуемой для перемещения того же объекта по вертикальной приставной лестнице на ту же высоту. Другими (более математическими) словами:
F наклонная плоскость< F приставная лестница,
где F — это сила, а знак «<���» означает «меньше, чем». Цена, которую мы платим за роскошь приложения меньшей силы, — увеличение расстояния, которое мы должны преодолеть:
d наклонная плоскость> d приставная лестница,
где знак «>» означает «больше, чем». В нашем примере вы перемещаете себя, но в целом это может быть что угодно; возможно, вы нечто несете или двигаете. Независимо от этого отношения между силой и расстоянием всегда сохраняются.
Неравенства, приведенные выше, дают нам четкое понимание взаимоотношений между силой и расстоянием. Основываясь на них, мы легко видим, что при росте одного из показателей другой снижается. Таким образом, между силой и расстоянием существует некий компенсирующий эффект. Фактически эти эффекты прекрасно сбалансированы, и, вне зависимости от того, что мы используем — наклонную плоскость или лестницу, — мы в любом случае выполним одну и ту же работу:
Работа = (сила, затраченная на движение объекта) × (пройденное объектом расстояние).
Поэтому с точки зрения работы при движении с использованием наклонной плоскости в сравнении с использованием приставной лестницы справедливо следующее:
A наклонная плоскость= A приставная лестница,
где A — это работа. Это означает, что объем работы, необходимой для перемещения чего-либо на определенную высоту, остается неизменным . Другими словами, природе все равно, как именно вы что-либо куда-либо доставите; необходимый объем работы будет тем же — ни меньше, ни больше.
Данная закономерность становится понятнее, когда мы рассматриваем случай, в котором мы поднимаем объект на определенную высоту. Чему мы противостоим? Мы противостоим силе притяжения Земли [1] С другой стороны, падение с той же высоты не требует с вашей стороны вообще никакой работы. Эту работу выполняет Земля. Поэтому спускаться вниз по лестнице гораздо легче, чем подниматься.
, а подъем чего-либо на большую высоту увеличивает потенциальную энергию этого объекта. Позднее мы поговорим о потенциальной энергии подробнее, но сейчас отметим, что работа и энергия тесно взаимосвязаны. Более того, мы начинаем подозревать, что природа имеет тенденцию сохранять энергию.
Заманчиво предположить, что мы могли бы создать машину, которая позволит нам использовать меньше силы, чтобы перемещать объекты, без необходимости дополнительно преодолевать требуемое расстояние. К сожалению, никакого «бесплатного сыра» нет. Когда дело доходит до законов Вселенной, становится ясно, что эта машина в действительности никогда не будет существовать. Возможно, никто не сказал об этом яснее, чем Галилео Галилей (1564–1642):
Читать дальше
Конец ознакомительного отрывка
Купить книгу