Существует множество способов сделать это, но при каждом из них придется иметь дело с хаотичной природой двигающихся волн. Изменение размера, силы, направления и длительности океанских волн позволяют извлечь огромный объем энергии, который можно преобразовать в работу [65]. С другой стороны, устойчивый и постоянный поток реки — гораздо более подходящий кандидат для получения энергии. Именно поэтому мы строим гидроэлектростанции на реках, а не в океанах [66].
Томсон делает вывод о том, что в природе чаще встречается рассеянная и неупорядоченная энергия; как только она превращается в рассеянную (как в случае с океаном), становится практически невозможно с ее помощью произвести полезную работу. Фактически если вы хотите извлечь энергию и это возможно, потребуется произвести работу, чтобы сделать это. Именно это показывает нам, что природа отдает предпочтение рассеиванию энергии.
Закон рассеивания Томсона (томсоновское рассеивание) объясняет поведение энергии, которая не учитывается в первом начале. Представьте себе тепловой двигатель Карно, где для производства работы мы можем использовать только часть тепла, в то время как оставшуюся часть неизбежно поглощает окружающая среда. Таким образом, даже в практически идеальной модели, где используется наиболее эффективный тепловой двигатель, Вселенная все еще требует утечки части тепла. Обойти этот закон, который Томсон считает «универсальной тенденцией», не представляется возможным. Если мы не пытаемся использовать энергию для работы теплового двигателя, то она попросту рассеется, как гласит теория Фурье.
Таким образом, в обоих случаях некоторое количество теплоты рассеивается, но не теряется. Рассеянное тепло уходит в случайном направлении — подобно движению волн океана. Таким образом, не вся энергия одинакова; природа стремится потратить (рассеять) такую энергию, как, например, тепло; и эта потраченная энергия не теряется и не уничтожается, она просто переходит в атомы, составляющие материю, что делает ее недоступной для выполнения работы.
Из этой концепции можно сделать вывод, что «упорядоченная» энергия обладает лучшими качествами по сравнению с «неупорядоченной», поскольку может быть использована для работы. Давайте еще раз обратимся к нашему примеру с океаном и его хаотичной энергией, заключенной в движении волн, и сравним ее с более упорядоченной энергией реки, которая может выполнять работу. Сравнение показывает нам, что рассеивание энергии является процессом ее «деградации» — от лучшего к худшему, от порядка к беспорядку.
Первое начало гласит, что энергия не создается и не уничтожается, но переходит из одной формы в другую, таким образом сохраняясь. Тем не менее закон рассеивания Томсона дает понимание того, что с энергией происходит больше процессов, чем описывает первое начало. Энергия не только сохраняется, но и стремится к рассеиванию. Более того, это рассеивание возникает в результате перехода от более высокого качества (упорядоченности) к низкому качеству (неупорядоченности). Следовательно, у энергии есть «предпочтительное направление», она стремится к рассеиванию, и, чтобы заставить ее двигаться в обратном направлении, необходимо выполнить некую работу [67]. В самом деле, закон рассеивания Томсона, вероятно, был его наиболее важным вкладом в термодинамику. Фактически он является основой второго начала термодинамики .
Глава 7
Предпочтительное направление
Энтропия — указатель природы
У природы, кажется, есть «предпочтительное направление» для определенных процессов. Чашка горячего кофе остывает, отдавая тепло в окружающую среду. Если добавить в эту же чашку сливки, они смешаются с кофе независимо от того, будете вы их размешивать или нет. Спустя некоторое время кофе и окружающая среда будут одинаковой температуры, а сливки и кофе станут однородной жидкостью.
Как все мы знаем, опыт учит нас, что тепло не станет внезапно возвращаться из окружающей среды обратно в кофе, заставляя его опять нагреться. Так и сливки не отделятся внезапно от кофе. Если мы уроним чашку с кухонного стола, она, скорее всего, разобьется после удара об пол. Мы можем догадаться, что сколько бы мы ни ждали, стакан (к нашему разочарованию) вдруг не станет целым, запрыгнув при этом на стол. Нам все же придется убирать осколки стакана. Эти и им подобные процессы называют необратимыми — у них есть предпочтительное направление течения, которое диктуют законы природы, и обратное течение просто не является предпочтительным.
Читать дальше
Конец ознакомительного отрывка
Купить книгу