Он также был убежден, что при этом тепло обязано сбрасываться. Карно считал, что как в водяном колесе вода падает из высокой точки в низкую, так и тепло в тепловом двигателе «падает» из области высокой температуры в область низкой, в конце концов полностью «перетекая» в холодный резервуар.
При работе водяного двигателя вода перетекает сверху вниз, полностью сохраняя свой объем (кроме той части, которая испаряется). Карно как сторонник теплородной теории придерживался этой аналогии с водяным двигателем и был уверен, что так же сохраняется и тепло в тепловом двигателе и в процессе его работы все тепло из горячего резервуара перейдет в холодный.
Примерно через 30 лет после открытия первого начала термодинамики стало ясно, что сохраняется вовсе не тепло, а скорее энергия в целом. Так что количество тепла, изначально покинувшего горячий резервуар, равняется сумме количества тепла, поступившего в холодный резервуар, и работы, проделанной тепловым двигателем.
Математическая модель обратимого теплового двигателя Карно позволила ему прийти к важнейшим выводам. Чтобы понять важность его модели, проведем мысленный эксперимент. Представим, что у нас есть два обратимых тепловых двигателя Карно (см. рис. 5.2). Назовем их «двигатель 1» и «двигатель 2» и подключим к одним и тем же горячему и холодному резервуарам. Теперь представим, что каждый из них выполняет разное количество работы. Для ясности назовем эти количества W 1и W 2, при этом W 1больше, чем W 2. Другими словами, производительность двигателя 1 выше, чем производительность двигателя 2.
Рис. 5.2. Представим, что двигатель 1 получает начальное количество теплоты ( q н) от нагревателя. Некоторое количество этой энергии ( q х) поступает в холодильник, в то время как оставшаяся энергия используется для работы (двигатель обратимый, поэтому нет потери тепла в результате механического или термического трения). Некоторая часть этой работы используется для запуска двигателя 2, так как тепловой насос забирает обратно из холодного резервуара такое же количество теплоты ( q х, которое перешло из двигателя 1), добавляя часть собственного тепла, и теперь способен передать полное изначальное количество теплоты ( q н, переданное двигателем 1) обратно в горячий резервуар. Далее представим, что двигатель 1 может сделать все это, и у него останется излишек работы.
Ключевая особенность здесь — обратимость тепловых двигателей, которая заключается в отсутствии необходимости преодоления механического или термического трения. Поэтому требуется крохотный объем работы — в дополнение к производимой, — чтобы превратить двигатель в тепловой насос , который берет энергию из холодного резервуара и направляет ее в горячий. Это происходит аналогично нашему примеру с обратимыми качелями, где мы в любой момент движения могли изменить его направление путем приложения малой силы. Мы знакомы с тепловым насосом — холодильник, который поддерживает низкую температуру, выводя внутреннее тепло в окружающую среду [44]. В самом деле, тепловой насос похож на водный насос , по сути являющийся водяным двигателем, который может быть обратимым, что позволяет перемещать воду с меньшей высоты на бо2льшую.
Поскольку у двигателя 1 больше объем производимой работы ( W 1), мы используем его для работы двигателя 2 в обратном режиме, превращая его в тепловой насос. Теперь мы можем создать следующий цикл: двигатель 1 забирает начальный объем тепла ( q н) из нагревателя, передает его часть q хв холодильник и выполняет работу. Эта работа заставляет двигатель 2 забрать такой же объем тепла ( q х, который передал двигатель 1) обратно из холодильника и добавить часть собственного тепла, таким образом передав полный объем тепла ( q н) обратно в нагреватель. Более того, мы можем представить, что двигатель 1 может проделать все это, и у него останется излишек работы. Наконец, весь этот процесс обратим благодаря тому, что не происходит потерь тепла из-за механического или термического трения.
Если что-то здесь кажется вам неправильным, вы не одиноки; Карно считал так же. Короче говоря, конечный результат этого цикла заключается в том, что двигатель 1 способен производить работу, не затрачивая на это энергию. Это происходит за счет того, что двигатель 2 (тепловой насос) возвращает энергию, которую он забрал из нагревателя ( q н). И даже после того, как он проделывает все это, у него остается излишек работы. Более того, поскольку нагреватель никогда не иссякает, цикл является бесконечным! Немного отличаясь в деталях, это похоже на вечный двигатель первого рода (о котором мы писали ранее), где мы представляли, что машина может двигаться бесконечно на одном баке топлива [45].
Читать дальше
Конец ознакомительного отрывка
Купить книгу