Затем Шрёдингер продолжил, упомянув свою вторую статью по квантовой статистике, в которой он изложил «волновую теорию» идеального квантового газа Эйнштейна, и то, как его настоящий труд может рассматриваться в качестве обобщения той работы. Это многозначительное утверждение показало, что его предыдущая работа по квантовой статистике была полноправным предшественником волновой механики. Следующая статья пришла всего лишь через четыре недели после первой, 23 февраля, и остальные четыре последовали очень быстро, последняя была отправлена 21 июня.
Вскоре после этого последовала реакция на волновую механику Шрёдингера. Планк отметил, что прочитал первую статью, «словно нетерпеливый ребенок, узнавший разгадку головоломки, которая давно досаждала его». В отношении второй статьи Планк снова отзывался с энтузиазмом: «Вы можете представить себе, с каким интересом и энтузиазмом я погрузился в чтение этой эпохальной работы…» Планк на самом деле был впечатлен и рассчитывал привлечь Шрёдингера в качестве своего преемника, как он, Планк, уйдет в отставку в 1927 году.
Эйнштейн вступил в обсуждение, сказав: «Идея Вашей работы исходит от настоящего гения!» Через десять дней он добавил: «Я убежден, что Вы решительно продвинулись вперед с Вашей формулировкой квантовых условий…»
Эренфест написал:
«Я просто в восторге от (Вашей теории) и от чудесной новой системы взглядов, которую она ведет за собой. В течение двух прошедших недель каждый день все члены нашей небольшой научной группы часами стояли по очереди у доски, чтобы испробовать все прекрасные следствия».
В основном, все были увлечены волновой механикой Шрёдингера. Однако это был не единственный вариант квантовой механики.
Две квантовых механики: Шрёдингера и Гейзенберга
С момента, когда Бор представил свою атомную квантовую теорию электронов, перескакивающих на нижний энергетический уровень, или орбиту, и излучающих при этом фотон определенной частоты, прошло более десяти лет. Атомная модель Бора дала очень хорошую, интуитивно понятную картину. Но реальность состоит в том, что мы не можем измерить движение электрона по орбите или даже по-настоящему узнать, существует ли это движение. С другой стороны, частотный спектр (спектральные линии), получающийся в результате электронных переходов на более низкие уровни энергии, — это то, что мы можем увидеть, и после всего этого времени он по-прежнему давал единственный ключ к разгадке внутренних механизмов атома.
Именно Вернер Гейзенберг (1901–1976) сказал, что правильная квантовая теория должна включать только те физические величины, которые на самом деле наблюдаемы. Когда ему было всего лишь двадцать три года, он принялся за построение такой теории. К концу мая 1925 года, после некоторого начального прогресса, Гейзенберга поразил тяжелый случай сенной лихорадки, что заставило его прервать обычный распорядок:
«От сенной лихорадки мне было настолько плохо, что пришлось попросить у моего профессора (Борна) отпуск. Я тут же отправился в Гельголанд, где я надеялся быстро выздороветь на бодрящем морском воздухе, вдали от цветения и лугов».
По-видимому, уединение на этом маленьком острове в Северном море не только освободило его от сенной лихорадки, но и освежило ум. Он говорил:
«Кроме повседневных прогулок и длинных заплывов, ничто не отвлекало меня от работы, и поэтому я быстрее добился прогресса, чем если бы работал (дома в университете) в Геттингене».
Не будем здесь вдаваться во все детали теории Гейзенберга, а вместо этого обратим внимание только на значимые аспекты. У теории Гейзенберга есть два важных элемента. Первый — это полный набор частот, на которых излучает атом вследствие перехода электронов на более низкие энергетические уровни. Вторая компонента, включенная им, — это вероятности, связанные с этими переходами.
Главным беспокойством, которое вызывала атомная модель Бора у Резерфорда, было отсутствие детерминированного поведения:
«Для меня представляется серьезной трудностью то, что Вы, без сомнений, прекрасно понимаете, а именно — как электрон (который вот-вот совершит переход) решает, на какой (энергетический уровень) он собирается (совершить переход, когда он) будет переходить с одного (энергетического уровня) на другой? Мне кажется, Вам придется предположить, что электрон заранее знает, куда ему перейти».
Гейзенберг эффективно решил эту проблему, включив набор вероятностей переходов, он утверждал, что в квантовой реальности нет привычного детерминизма классической физики, столь желанного для Резерфорд. Вместо этого различные переходы случаются просто в соответствии с их вероятностями. Такой прецедент уже был в работе Эйнштейна 1916–1917 годов, где он использовал концепцию вероятностей перехода для атомов, взаимодействующих со светом [210].
Читать дальше
Конец ознакомительного отрывка
Купить книгу