Хотя ученые к этому времени уже понимали, что определенные характеристики поверхности фюзеляжа могут позволить самолету избежать пеленгации радаром, математический аппарат, необходимый для построения работающей физической теории дифракции, еще не существовал. Его и разработал Петр Уфимцев, автор упомянутой монографии 1962 года. Этой книге, в первое десятилетие холодной войны остававшейся в неизвестности, суждено было стать «розеттским камнем», совершившим прорыв в стелс-технологии, «технологии невидимости». Высказанные в ней идеи привели к созданию не только стелс-истребителя «Локхид F-117A», но позже и элегантного нортроповского стелс-бомбардировщика В-2, фюзеляж которого вместо множества граней состоит из непрерывно изгибающихся криволинейных поверхностей. Различия между этими подходами связаны просто-напросто с разницей в вычислительных мощностях, существовавших во время создания одной и другой модели, с различиями между компьютерами 1970-х и 1980-х – последние были в сто раз мощнее [293]. Если бы Бэтмен летал на «бомбардировщике-невидимке», его «Бэтапланом» был бы В-2.
___________________
Уже более полувека в военном деле большая часть излучения регистрируется вне области видимого света. Столь же долго регистрируют космические явления на различных длинах электромагнитных волн и астрофизики, изобретая для этого все новые и новые приемники. В сентябре 2015 года к арсеналу их наблюдательных методов добавился еще один: регистрация гравитационных волн. Эти сигналы, обнаруженные коллаборацией LIGO (Laser Interferometer Gravitational Wave Observatory), представляют собой экзотическую «рябь» на ткани пространства-времени, порожденную действием гравитации, и не имеют отношения к свету. Но при этом гравитационные волны, распространяющиеся сквозь Вселенную, так ослабляются к тому времени, как достигают Земли, что, вероятно, пройдет еще много лет – может быть, столетия или тысячелетия, – прежде чем гравитационная астрофизика приведет к рождению новой военной техники.
В наше время большинство астрофизических сенсаций обязано своим появлением именно детекторам, работающим в невидимых частях спектра: от крайне низкочастотных, низкоэнергетических радиоволн с длиной волны в несколько сот миль до крайне высокочастотных и высокоэнергетических гамма-лучей с длиной волны в квадриллионные доли сантиметра. Хотите увидеть гигантский звездный поток на расстоянии в 76 000 световых лет от Земли, состоящий из звезд, в несколько миллионов раз более слабых, чем самые слабые светила, различимые невооруженным глазом? Это можно сделать с помощью принадлежащего NASA инфракрасного космического телескопа Спицера. А как насчет внезапной вспышки гамма-лучей, произошедшей в галактике, отстоящей от нас на расстоянии в 7,6 миллиарда световых лет и гораздо более древней, чем сама Земля? Эту вспышку можно «увидеть», используя гамма-телескоп VERITAS (Very Energetic Radiation Imaging Telescope Array System) в Аризоне, а подтверждает данные космический гамма-телескоп NASA «Ферми». Посмотреть на галактику, находящуюся почти в 10 миллиардах световых лет от Земли, с массой в 400 триллионов раз больше массы Солнца? Воспользуйтесь данными космической обсерватории ESA «ХММ-Ньютон» и рентгеновской космической обсерватории NASA «Чандра», и вы сможете определить ее массу.
Астрофизики сегодня видят Вселенную неизмеримо более сложной, чем она представлялась Ньютону или Гершелю. Некоторые объекты, как, например, «звездные ясли», области звездообразования, ослепительно сияют в инфракрасных лучах, но остаются почти полностью темными в видимом диапазоне. Не видим мы и космического микроволнового фона. И все же, несмотря на то что с тех пор, как закончилась Вторая мировая война, на невидимых волнах уже сделано множество удивительных открытий, все еще преподносят нам сюрпризы и приемники видимого диапазона. В 2016 году астрофизики, работавшие на космическом телескопе Хаббла, объявили, что обнаружили на расстоянии в 13,4 миллиарда световых лет от Земли самую далекую из всех когда-либо регистрировавшихся галактик. Звезды в ней должны были состоять только из водорода, гелия и малого количества лития, потому что никаких других атомов тогда еще не существовало: ни углерода, ни азота, ни железа, ни кремния и, конечно, ни серебра, ни золота.
У каждой полосы излучения свои трудности детектирования. Земная атмосфера прозрачна в видимой части спектра, почему мы и видим Солнце, но для ультрафиолетового излучения она в основном непрозрачна. Облака непрозрачны для видимого света, но почти полностью прозрачны для инфракрасного. Мы не можем видеть сквозь кирпичные стены, а для микроволновых лучей эти стены прозрачны – именно поэтому мы можем разговаривать по сотовому телефону, находясь в помещении. Люди прозрачны для радиоволн. Стекло прозрачно для видимого света. Вы скажете, что кирпичная стенка непрозрачна, но астрофизик спросит: для какой длины волны? Еще астрофизик спросит: какова ее кривая пропускания? То есть какая часть света на данной длине волны проходит через данную среду без поглощения?
Читать дальше
Конец ознакомительного отрывка
Купить книгу