Взгляните на рис. 30, на нем изображена полученная с помощью электронного микроскопа фотография одного из видов органического стекла, которое было приготовлено в результате полимеризации при одновременном озвучивании. На фотографии хорошо видны ориентированные, наподобие линеек в нотной тетради, нитеобразные кристаллы этого вещества. Если бы ультразвук не действовал, молекулы не расположились бы так упорядоченно и механические свойства вещества были бы иными. Когда ученые найдут пути управления этим воздействием, инженеры смогут придавать веществу по своему желанию те или иные механические свойства.
Рис. 30.Ориентация молекул при ультразвуковой полимеризации
Ускорение роста огромных молекул под действием ультразвука имеет важное значение. Однако при озвучивании наблюдаются иногда и другие явления, с которыми приходится считаться.
Двойственность свойств неслышимых звуков
В ультразвуке своеобразно сочетаются противоположные свойства. С одной стороны, он ускоряет полимеризацию, а с другой — разламывает большие молекулы, образуя частицы гораздо меньших размеров. Процесс этот химики называют деполимеризацией.
Если подвергнуть озвучиванию студнеобразный раствор желатина, то вязкость его быстро уменьшится и студень потечет. Однако если прекратить озвучивание, через некоторое время жидкий раствор снова превратится в студень.
Раствор желатина имеет вид студня благодаря наличию определенной структуры. Длинные нитеобразные молекулы желатина, переплетаясь при своем движении, образуют как бы каркас-сетку, внутри которого находится растворитель — вода. Силы, удерживающие молекулы желатина в каркасе, невелики. Ультразвуковые колебания разламывают каркас, и раствор приобретает текучесть. При прекращении озвучивания молекулы желатина в результате присущего им теплового движения снова причудливо переплетаются, восстанавливая разрушенный каркас и, следовательно, вязкость.
Мощные ультразвуковые колебания способны вызвать и такое понижение вязкости раствора высокомолекулярного вещества, которое уже не исчезает после прекращения озвучивания.
На рис. 31 изображено изменение молекулярного веса полистирола, растворенного в толуоле. Под действием ультразвука огромные молекулы полистирола сравнительно быстро разламываются.
Рис. 31.Деполимеризация полистирола в толуоле
В основном расщепление молекул под действием ультразвука вызвано опять-таки кавитацией.
Рассмотрим более подробно, как происходит захлопывание кавитационного пузырька.
Поверхность образовавшегося внутри жидкости пузырька стремится сократиться, подобно тому как стремится сжаться растянутая резиновая пленка. Поэтому, как только разрежение в звуковой волне сменится давлением, пузырек сожмется.
Замечательным свойством образующихся в жидкости пузырьков является то, что чем меньше подобный пузырек, тем больше натяжение его стенок, в противоположность тому, что наблюдается у пузырьков, окруженных резиновой пленкой.
Поэтому перед тем, как захлопнуться, то есть в тот момент, когда размеры пузырька сделаются предельно малыми, давление внутри него достигнет огромной величины.
Именно это увеличение давления и разламывает макромолекулы.
Однако кавитация не является единственной причиной расщепления молекул под действием ультразвука. В озвучиваемом растворе громоздкие молекулы, образующие пластические массы, окружены со всех сторон маленькими молекулами растворителя. В результате своих огромных размеров макромолекулы малоподвижны, неповоротливы. Переплетаясь между собой, они делаются еще менее подвижными и при озвучивании не успевают следовать за колебаниями, совершаемыми в звуковой волне молекулами растворителя, которые снуют возле них. Между молекулами растворенного вещества и растворителем возникают силы трения, подобные тем, какие появляются при движении любого тела в вязкой жидкости. Как показывают расчеты, этих сил часто бывает достаточно для разламывания макромолекул.
Если же длина волны ультразвука очень мала, то может оказаться так, что одна часть гигантской нитеобразной молекулы будет находиться в области сжатия, а другая — в области разрежения. В этом случае также возникает разрывающее усилие, которое может приводить к разламыванию нитеобразных молекул.
Читать дальше