В настоящее время разработано несколько способов, с помощью которых можно сделать ультразвуковые волны еще и видимыми, что дает возможность следить за ходом ультразвукового луча.
Ультразвуковые волны делаются видимыми
В жаркий летний день можно наблюдать поднимающиеся над шоссейной дорогой струйки воздуха, нагревшегося от поверхности земли. Струйки сделались видимыми благодаря расширению воздуха при нагревании, которое привело к уменьшению его плотности, а последнее — к изменению оптических свойств, к уменьшению коэффициента преломления. По той же причине были бы видимы струйки сжатого воздуха, плотность которого больше, чем плотность окружающего воздуха.
Такие же явления наблюдаются и в жидкостях. Налейте в стакан теплой воды и, расположив позади стакана книгу, добавьте осторожно холодной и, следовательно, более плотной воды. Сейчас же возникнут струйки с иными оптическими свойствами. Наличие этих струек приведет к тому, что буквы на странице, рассматриваемой через стакан с водой, покажутся нам колеблющимися, расплывающимися.
Если осветить стакан свечой, то на теневом изображении эти струйки будут ясно различимы.
При распространении звуковой волны происходят, как мы знаем, попеременные сжатия и разряжения воздуха, то есть изменения, аналогичные тем, о которых мы говорили в предыдущем опыте. Следовательно, теневое изображение звуковой волны можно получить так же, как изображение водяных струй, температура которых различна. При этом надо только помнить, что в проходящей звуковой волне сжатия и разрежения чередуются чрезвычайно быстро. Если мы хотим получить изображение волны, то должны осветить ее в течение очень короткого промежутка времени, пока распределение давления не успело значительно измениться. Практически для получения изображения звуковых волн пользуются прерывистым светом, который вспыхивает с той же частотой, с какой колеблется кварцевая пластинка. Вспышки света совпадают при этом с одним и тем же положением колеблющейся пластинки, так что изображение звуковой волны на экране как бы «застывает» и получается четким.
Заменив экран фотографической пластинкой, звуковую волну можно сфотографировать.
Эти особенности волн позволили советским ученым С. Н. Ржевкину и С. И. Кречмеру применить ультразвуки для изучения на моделях акустических свойств различных построек: концертных залов, аудиторий и т. п.
На рис. 23 изображено распространение волны, на пути которой расположена колонна. Хорошо видна «акустическая тень»— темное место за колонной. В зоне акустической тени звук будет ослаблен. Таким методом можно решать самые различные задачи архитектурной акустики.
Изучая на небольшой модели акустические свойства проектируемого концертного зала или театра, нельзя пользоваться обычными звуковыми волнами. Поведение волны, проходящей через отверстие в преграде или встречающей на своем пути препятствие, как мы уже знаем, определяется соотношением между длиною волны и размерами отверстия или препятствия. Поэтому при моделировании необходимо уменьшить длину волны звука пропорционально уменьшению размеров сооружения. Применяя ультразвуковые волны, длина которых очень мала, можно делать и модели небольших размеров.
Но как же получить прерывистое освещение такой большой частоты, которая соответствовала бы частоте ультразвуковых волн?
Рис. 23.Акустическая тень от колонны
Если изменение яркости света должно происходить не слишком быстро, то можно воспользоваться обычной электрической лампочкой, изменяя напряжение питающего тока. Там же, где яркость света должна меняться очень быстро, способ этот непригоден, так как за короткий промежуток времени раскаленная нить лампочки не будет успевать охлаждаться и яркость света будет оставаться практически постоянной.
Для электрического освещения обычно пользуются переменным током, напряжение которого 100 раз в секунду уменьшается до нуля, и все же никаких изменений в яркости света при этом не наблюдается. Даже за этот большой по сравнению с продолжительностью ультразвуковых колебаний промежуток времени нить не успевает охладиться.
Необходимость быстро изменять, или, как говорят, модулировать, силу света часто возникает в технике: при записи звука, в телевидении, при изучении работы быстродвижущихся частей машин и т. д.
Читать дальше