В капле жидкости действуют силы молекулярного сцепления, придающие капле сферическую форму. Помимо этого, в заряженной капле между одноименно заряженными частицами действуют силы электрического отталкивания, стремящиеся разорвать каплю. Подобно этому и внутри атомного ядра действуют силы двоякого рода: помимо ядерных сил притяжения, связывающих все нуклоны воедино, там действуют еще электрические силы отталкивания между положительно заряженными протонами. Ядерные силы внешне подобны силам молекулярного сцепления в жидкости и придают ядру сферическую форму как наиболее устойчивую.
Атомные ядра отличаются обычно большой прочностью (устойчивостью), так как ядерные силы притяжения в десятки миллионов раз больше электрических сил отталкивания, действующих в ядре между протонами.
Капельная модель позволяет рассматривать процесс искусственного расщепления атомных ядер быстрыми частицами — «снарядами» — следующим образом. Кинетическая энергия частицы, попавшей в ядро, перераспределяется между всеми нуклонами ядра благодаря тесному взаимодействию между ними. Ядро приходит от этого в возбужденное состояние, что аналогично нагреванию капли жидкости. Поэтому можно, как впервые показал советский физик Л. Д. Ландау, условно говорить о «температуре» ядра и ее повышении за счет энергии попавшего в ядро «снаряда». В результате этого частица или группа частиц возбужденного ядра, составляющих новое ядро, может вылететь за его пределы подобно тому, как вылетают молекулы жидкости при ее испарении.
В свете сказанного процесс расщепления ядра атома азота альфа-частицей, осуществленный Резерфордом, можно рассматривать следующим образом. При удачном попадании быстрая альфа-частица проникает внутрь ядра атома азота и захватывается им. В результате получается составное или промежуточное ядров сильно возбужденном («нагретом») состоянии. В последующее время это возбужденное ядро, выбрасывая («испаряя») протон (ядро водорода), превращается в ядро кислорода с атомным весом 17. Схематически этот процесс показан на рис. 19.
Рис. 19.Схема превращения азота в кислород
Для объяснения некоторых свойств атомных ядер пользуются также так называемой «оболочечной»моделью ядра. Согласно этой модели протоны и нейтроны движутся внутри ядра вокруг некоторой средней точки, образуя слои (оболочки), подобно тому как электроны в атоме движутся вокруг ядра, располагаясь слоями.

IV. ЯДЕРНАЯ ЭНЕРГИЯ
1. Закон сохранения материи и ее движения
Ядро — самая тяжелая часть атома и заключает в себе почти всю его массу. На долю легких электронов приходится менее 0,05% всей массы атома.
Соответственно этому распределяется в атоме и энергия. Почти вся энергия, скрытая в атоме, заключена (сосредоточена) внутри его ядра; на долю электронной оболочки приходится менее 0,05% всей энергии атома. Такое заключение о распределении энергии в атоме вытекает из закона взаимосвязи массы и энергии и подтверждается практикой.
Как известно, энергия и масса являются свойствами материи. Масса — физическая величина, характеризующая инерцию материи, то есть свойство ее сохранять состояние своего движения при отсутствии внешних воздействий. Энергия — это мера физического движения материи во всех ее формах. К такому пониманию энергии наука пришла не сразу.
Еще около 200 лет назад М. В. Ломоносов сформулировал закон сохранения материи и ее движения (закон Ломоносова), согласно которому «все перемены, в натуре (природе. — В. М. ) случающиеся, такого суть состояния, что сколько чего от одного тела отнимется, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной закон простирается и в самые правила движения: ибо тело, движущее своей силой другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает».
Этими словами Ломоносов утверждал неуничтожимость материи и ее движения. Одним из частных проявлений всеобщего закона Ломоносова был экспериментально установленный им самим закон сохранения вещества (массы). Значительно позже, лишь в XIX веке, в связи с развитием производства, складывается в науке понятие об энергии. Широкое использование в промышленности тепловой энергии и начавшееся овладение электрической энергией привело немецких физиков Р. Майера и Г. Гельмгольца и английского физика П. Джоуля к открытию в середине XIX века закона сохранения и превращения энергии. Согласно этому закону энергия в вечном круговороте материи не исчезает и не создается вновь, а лишь превращается из одной формы в другую. Этот закон подтвердил гениальное предвидение Ломоносова о переходе одних видов движения в другие и явился дальнейшим развитием и конкретизацией его закона.
Читать дальше
Конец ознакомительного отрывка
Купить книгу