Можно показать, что фосфор в плодах томата скапливается в семенах (рис. 24), а в табаке, зараженном вирусной мозаикой, фосфор особенно интенсивно поглощается больными листьями (рис. 25).
Рис. 24.Радиоавтограф (позитив) плодов томата, подкормленного радиоактивным фосфором (разрез)
Рис. 25.Радиоавтограф (позитив) табака, подкормленного радиоактивным фосфором. Верхние листья поражены вирусной мозаикой
Фотосинтез.Углерод, идущий на построение клеток тканей, растения получают главным образом из воздуха в виде углекислого газа, который в листьях на свету претерпевает ряд сложнейших превращений. Процесс этот носит название фотосинтеза.
Фотосинтез сложен и многообразен. Исследования А. К. Тимирязева и его учеников заложили основу учения о фотосинтезе, но только с помощью метода меченых атомов удалось показать, как углекислый газ и вода превращаются в углеводы. Оказалось, что кислород, выделяющийся при синтезе углеводов, образуется из воды, что листья растений способны запасать солнечную энергию, то есть процесс фотосинтеза продолжается некоторое время и в темноте. В этих исследованиях растения выдерживались в различных условиях в атмосфере углекислого газа, содержащего радиоактивный углерод, затем с помощью счетчика определялось количество радиоактивного углерода в тканях листьев. Более сложные опыты заключались в том, что исследовалось не просто содержание радиоактивного углерода, а определялось, в какие химические соединения и при каких условиях он входит. После выдерживания в атмосфере радиоактивного углекислого газа растения убивались спиртом. При этом образовавшиеся в процессе фотосинтеза органические соединения переходили в раствор.
Для анализа состава раствора к нему добавляли нерадиоактивные вещества, наличие которых в нем предполагали. Эти вещества выделяли из смеси известными химическими приемами. Если вещество оказывалось радиоактивным, то тем самым доказывалось его образование в процессе опыта по фотосинтезу из углекислого газа, так как вместе с нерадиоактивным добавленным веществом извлекалось и то радиоактивное, которое было образовано в процессе фотосинтеза. Если же отделенное вещество было нерадиоактивно, то, следовательно, его образование не связано с поглощением углекислого газа из воздуха.
Интересными являются опыты с применением бумажной хромотографии. В этом случае спиртовой экстракт из растений, выдержанных в атмосфере радиоактивного углекислого газа, наносился на угол вертикально висящего листа фильтровальной бумаги.
Верхний край бумаги опускался в ванночку с органическим веществом — фенолом. Фенол впитывался бумагой и проникал в нее, перемещаясь все ниже и ниже. По мере смачивания бумаги фенолом вещества, нанесенные на ее угол, также передвигались сверху вниз. Скорость передвижения различных веществ при таком способе промывания бумаги различная, поэтому, если выдержать край бумаги в феноле определенное время, вещество переместится на какое-то определенное расстояние от края. Затем лист бумаги поворачивался на 90° и ее край опускался в ванну с раствором пропионовой кислоты в спирте. Снова происходило движение жидкости по бумаге сверху вниз, а вместе с ней и находящихся на бумаге веществ. Благодаря такому приему каждому веществу при стандартных условиях промывания соответствовал определенный участок бумаги. Предварительно те же операции проводили со смесью веществ, которые ожидали найти в растении, содержащих в своем составе радиоактивные атомы. Таким образом, находили места расположения отдельных веществ на бумаге при стандартном промывании. После промывания исследуемого раствора с помощью счетчика или фотографическим методом определяли, на каких частях бумаги находятся соединения, содержащие радиоактивный углерод, и, следовательно, какие вещества образовались из радиоактивного углекислого газа в условиях опыта (рис. 26).
Рис. 26.Радиоавтографы (негативы) результатов разделения на бумаге продуктов фотосинтеза с углекислым газом, содержащим углерод 14:
а — сетка, полученная при промывании смеси, содержащей 10 веществ; б — растение выдержано в атмосфере углекислого газа 5 секунд; в — растение выдержано в атмосфере углекислого газа 90 секунд; 1 — аланин; 2 — серин; 3 — аспаргин; 4 — яблочная кислота; 5, 6, 7 — глицерофосфорная кислота; 8 — глюкозо-фосфат; 9 — фруктозо-фосфат; 10 — сахороза
Рисунок 26 показывает, что второе вещество — серин образуется из первого — алонина, так как при 5-секундной экспозиции растения в атмосфере радиоактивного углекислого газа его обнаружить не удается, а при 90-секундной выдержке растения в атмосфере радиоактивного углекислого газа он появляется. Подобные анализы радиоактивности отдельных составляющих смеси, полученной при различном времени выдерживания растений в атмосфере радиоактивного углекислого газа, позволяет найти последовательный ход превращения одних веществ в другие.
Читать дальше