Гулиа утверждает, что в отсутствие деформации («расплющивания») сопротивление качению отсутствует. Однако в классической механике известен эффект зависимости линейного импульса тел вращения с одинаковой массой и геометрическими размерами от пространственного распределения их массы относительно центра вращения. Например, при качении без проскальзывания сплошной цилиндр скатывается с наклонной плоскости быстрее полого. Это прямое подтверждение реальности сил инерции и центробежной силы в частности, на преодоление которой расходуется часть энергии передаваемой телам вращения при линейном взаимодействии.
Гулиа считает, что сила инерции фиктивно противодействует внешней силе, однако в приведенном выше примере такое «фиктивное» противодействие прямолинейному движению за счет инерции вращения вполне реально влияет на линейный импульс тел вращения с разным пространственным распределением массы относительно центра вращения. Это ли не ключ к разгадке движения инерцоидов, который не нашел в свое время Гулиа и по этой причине легко отказался от «своей» идеи, порочащей сегодня его ученое звание, как он наверное считает?
Таким образом, позиция Гулиа еще более запутана, чем в научной литературе, в которой путаница вполне возможно является только лингвистической. Гулиа же открытым текстом противоречит сам себе. Он твердо безо всяких недомолвок говорит, что сила инерции не существует, и она ничего не может «сломать», однако «ради справедливости» он все же допускает ее существование!
Это опять же не предвзятое отношение к Гулиа. Профессор же сам сетует, что Лагранж опрометчиво, на его взгляд, «все-таки привлек термин „сила“ в формулировку их общего принципа Даламбера-Лагранжа» , что, по мнению Гулиа, способствовало появлению путаницы в отношении силы инерции. Однако популяризатору науки со своей стороны следует выражаться яснее. Не бывает такого, когда чего-то не бывает, но ради справедливости все-таки бывает.
Таким образом, в позиции ученого наблюдается, просто полная беспринципность! Перефразируя известную пословицу позицию ученого можно выразить словами «если силы инерции нет, но очень хочется, то она все-таки есть».
1.2. Формирование сил взаимодействия. Механизм явления инерции. «Безопорное движение, как законное и неизбежное следствие всех несимметричных взаимодействий
Вся путаница в современной физике, в том числе и двойственность сил инерции, связана с отрывом математических моделей от реального механизма физических явлений. Математические модели часто создаются для отдельных составных частей физического явления. При этом математическая модель локально выделенной части явления упрощает решение локальной физической задачи, подменяя механизм физического явления его частными закономерностями в виде связи начальных условий с конечными результатами выделенной части явления. Однако для того чтобы выявить механизм физического явления в целом результаты, полученные после решения локальных задач необходимо рассматривать в комплексе, что в современной физике соблюдается не всегда.
В классической физике речь часто идёт не о смысле физических явлений, а только о том, что видит субъективный наблюдатель в локальной системе отсчёта. При этом абстрактные математические модели, описывающие только частные случаи единого физического явления, получают статус фундаментальных законов природы. В результате вместо единого фундаментального закона физического взаимодействия в классической физике существует множество частных «фундаментальных» законов. Это все законы динамики Ньютона, законы динамики вращательного движения, а также закон сохранения импульса и закон сохранения углового момента. При этом иногда появляются новые физические теории и новые физические законы. Типичный пример таких теорий это СТО и ОТО А. Эйнштейна.
Доходит даже до вопроса о применимости «фундаментальных» законов физики в той или иной системе отсчёта, что свидетельствует об их частной «фундаментальности» только в своих системах отсчёта???!!! Причём даже сторонники классической физики не имеют на этот счёт единого мнения! С точки зрения А. Н. Матвеева, например, первый закон Ньютона в неинерциальной системе отсчета не выполняется, в то время как третий закон Ньютона, хотя и с некоторыми оговорками выполняется (см. выше). О. Ф. Кабардин, также выступающий с позиций классической физики, считает, что третий закон Ньютона в неинерциальных системах отсчета не выполняется безо всяких оговорок: «Третий закон Ньютона выполняется только в инерциальных системах отсчета». («ФИЗИКА», МОСКВА, «ПРОСВЕЩЕНИЕ» 1991, 8 ТРЕТИЙ ЗАКОН НЬЮТОНА, стр. 21.)
Читать дальше