Фейнман назвал этот подход к квантовой механике суммированием по историям (или суммированием по путям ); он показал, что вероятностная волна объединяет все возможные варианты прошлого, которые могли предшествовать данному наблюдению, и хорошо проиллюстрировал, что, чтобы преуспеть там, где классическая физика пасует, квантовая механика рассматривает значительно более широкие рамки истории. [3]
В страну Оз
Имеется вариация эксперимента с двумя щелями, в которой интерференция между альтернативными историями делается еще более явной, поскольку два пути к экрану детектора разделены более сильно. Немного проще описать эксперимент, используя фотоны вместо электронов, так что мы начинаем с фотонного источника – лазера – и стреляем им в направлении так называемого лучевого разветвителя . Этот прибор сделан из наполовину посеребренного зеркала, похожего на те, что используются для наблюдения (подглядывания), которое отражает половину падающего на него света, позволяя другой половине проходить насквозь. Начальный одиночный луч света, таким образом, разветвляется на два, левый луч и правый луч, аналогично тому, что происходит с лучом света, который сталкивается с двумя щелями в двухщелевом опыте. Используя подходящим образом расположенные полностью отражающие зеркала, как показано на Рис. 7.1, два луча возвращаются назад друг к другу и далее вниз к местоположению детектора. Рассматривая свет как волну, как в описании Максвелла, мы ожидаем – и, несомненно, находим – интерференционную картину на экране. Длина перемещения для всех путей, за исключением центральной точки на экране, немного отличается для левого и правого пути, так что пока левый луч может достичь гребня в заданной точке экрана детектора, правый луч может достичь гребня, впадины или некоторого промежуточного состояния. Детектор записывает объединенную интенсивность двух волн, и отсюда мы получаем характерную интерференционную картину.
(а) (b)
Рис 7.1(а) В эксперименте с лучевым разветвителем лазерный свет разделяется на два луча, которые путешествуют двумя отдельными путями к экрану детектора; (b) Интенсивность излучения лазера может быть снижена, так что он выстреливает индивидуальные фотоны; фотоны воздействуют на местоположения на экране, со временем выстраивая интерференционную картину.
Отличие классики и квантов становится очевидным, если мы радикально понизим интенсивность лазера, так что он будет испускать отдельные фотоны, скажем, один фотон в несколько секунд. Когда отдельный фотон попадает в лучевой разветвитель, классическая интуиция говорит, что он либо пройдет насквозь, либо будет отражен. Классические рассуждения не позволяют даже намека на любой вид интерференции, поскольку тут нечему интерферировать: все, что мы имеем, это отдельные, индивидуальные, особые фотоны, проходящие от источника к детектору, один за одним, некоторые по левому пути, некоторые по правому. Но когда проводится экспримент, индивидуальные фотоны со временем рисуют почти как на Рис. 4.4, давая интерференционную картину, как на Рис. 7.1b. В соответствии с квантовой физикой причина в том, что каждый зарегистрированный детектором фотон может дойти до детектора или двигаясь по левому пути, или двигаясь по правому пути. Так что мы обязаны объединить эти две возможные истории при определении вероятности, что фотон попадет на экран в той или в другой выделенной точке. Когда левая и правая вероятностные волны для каждого индивидуального фотона сливаются таким образом, они дают волнистую вероятностную картину волновой интерференции. Так что, в отличие от Дороти (Элли), которая была сбита с толку, когда Пугало (Страшила) указал сразу налево и направо, показывая ей направление в страну Оз, данные могут быть объяснены полностью через представление, что каждый фотон двигается в направлении детектора сразу и левым и правым путями.
Предварительный выбор
Хотя мы описали смешивание возможных историй в ситуации только пары отдельных примеров, этот способ мышления о квантовой механике является общим. В то время как классическая физика описывает настоящее как имеющее единственное прошлое, вероятностные волны квантовой механики увеличивают арену истории: в формулировке Фейнмана наблюдаемое настоящее представляет смесь – особый вид усреднения – всех возможных прошлых, совместимых с тем, что мы сейчас наблюдаем.
В случае экспериментов с двумя щелями и с лучевым разветвителем для электрона или фотона имеются два пути, чтобы дойти от источника до экрана детектора, – идти налево или идти направо, – и только при комбинировании возможных историй мы приходим к объяснению того, что мы наблюдаем. Если барьер имеет три щели, мы должны принять во внимание три вида историй; с 300 щелями нам необходимо включить вклады целого множества результирующих возможных историй. Если мы представим, доведя это до предела, что прорезано гигантское количество щелей, – так много, что, фактически, барьер эффективно исчезает, – квантовая физика говорит, что каждый электрон тогда будет двигаться по любой возможной траектории на своем пути до выделенной точки на экране, и только объединяя вероятности, связанные с каждой такой историей, мы можем объяснить итоговые данные. Это может звучать странно. (Это и есть странно). Но такое причудливое рассмотрение прошедших времен объясняет данные на Рис. 4.4, на Рис. 7.1b и любой другой эксперимент, проводимый с микромиром.
Читать дальше