Энтропия: прошлое и будущее
Ранее мы ввели дилемму прошлого и будущего путем сравнения наших повседневных наблюдений со свойствами ньютоновских законов классической физики. Мы подчеркнули, что мы постоянно ощущаем очевидную направленность пути, по которому вещи развиваются во времени, но сами законы трактуют то, что мы называем прямым и обратным направлением во времени, на совершенно одинаковых основаниях. Так как в рамках законов физики нет стрелы, которая обозначает направление во времени, нет указания, требующего: "Используйте этот закон в данной темпоральной ориентации, но не в обратной", мы приходим к вопросу: Если законы, лежащие в основе опыта, трактуют обе темпоральные ориентации симметрично, почему сам опыт (ощущения) так односторонен во времени, всегда происходя в одном направлении, но никогда в обратном? Откуда возникает наблюдаемая и ощущаемая направленность времени?
В последней секции нам показалось, что был сделан прогресс через второй закон термодинамики, который явно выделяет будущее как направление, в котором энтропия возрастает. Но после дальнейших размышлений это оказывается не так просто. Отметим, что в нашем обсуждении энтропии и второго закона мы не преобразовывали никоим образом законы классической физики. Вместо этого, все, что мы сделали, это использовали законы в "крупномасштабных" статистических рамках: мы проигнорировали тонкие детали (точный порядок несоединенных страниц Войны и мира , точные положения и скорости составляющих яйца, точные положения и скорости молекул СО 2в бутылке колы), а, напротив, сконцентрировали наше внимание на макроскопических, всеобъемлющих свойствах (страницы упорядочены или нет, яйцо разбито или восстановлено, молекулы газа рассеяны или не рассеяны). Мы нашли, что когда физические системы существенно сложны (книги с большим числом страниц, хрупкие объекты, которые могут разбиться на много фрагментов, газ с большим числом молекул), имеется огромное отличие в энтропии между их упорядоченными и неупорядоченными конфигурациями. А это значит, что имеется огромная вероятность, что системы будут эволюционировать от более низкой к более высокой энтропи, что и является грубо утверждением второго закона термодинамики. Но ключевым фактом, на который надо обратить внимание, является то, что второй закон производен: он просто является следствием вероятностных рассуждений, примененных к ньютоновским законам движения.
Это приводит нас к простому, но поразительному выводу: поскольку ньютоновские законы физики не имеют встроенной темпоральной ориентации, все рассуждения, которые мы использовали для обоснования, что системы будут развиваться от более низкой к более высокой энтропии в направлении в будущее, работают одинаково хорошо, если их применить в направлении прошлого. Еще раз, так как лежащие в основе законы физики имеют симметрию по отношению к обращению времени, для них нет способа даже провести различие между тем, что мы называем прошлым, и тем, тем мы называем будущим. Точно так же, как нет указательного столба в глубокой темноте пустого пространства, который объявляет это направление вверх, а это направление вниз, нет ничего в законах классической физики, что называло бы это направление во времени будущим, а это направление во времени прошлым. Законы не предлагают темпоральной ориентации; это отличие, к которому они полностью нечувствительны. А поскольку законы движения несут ответственность за то, как изменяются вещи, – как в направлении, которое мы называем будущим, так и в направлении, которое мы называем прошлым, – статистические/вероятностные рассуждения, стоящие за вторым законом термодинамики, применимы в равной степени к обоим темпоральным направлениям. Следовательно, имеется не только подавляющая вероятность того, что энтропия физической системы будет больше в том направлении, что мы называем будущим, но имеется такая же подавляющая вероятность, что она будет больше в направлении, которое мы называем прошлым. Мы показали это на Рис. 6.2.
Это ключевой момент для всего, что последует дальше, но это также обманчиво просто. Общее противоречие в том, что если в соответствии со вторым законом термодинамики энтропия возрастает по направлению в будущее, тогда энтропия с необходимостью уменьшается по направлению в прошлое. Но тут и появляется тонкость. Второй закон действительно говорит, что если в любой данный момент, которым мы интересуемся, физическая система еще не достигла максимально возможной энтропии, экстраординарно вероятно, что физическая система будет впоследствии получать и раньше получала больше энтропии. Это содержание Рис. 6.2b. С законами, которые закрывают глаза на различие прошлого от будущего, такая симметрия времени неизбежна.
Читать дальше