Нейтрино являются одной из возможностей. Расчеты оценивают их реликтовое распространение со времен их производства в Большом взрыве в примерно 55 миллионов на кубический метр пространства, так что, если окажется, что один из трех видов нейтрино весит около одной сотой от миллионной (10 –8) доли массы протона, они смогут заместить темную материю. Хотя недавние эксперименты дали сторогое доказательство, что нейтрино имеют массу, в соответствии с сегодняшними данными они слишком легкие, чтобы выполнить роль темной материи; они не дотягивают до нужной отметки на фактор более чем сто.
Другое перспективное предложение привлекает суперсимметричные частицы, особенно фотино, зино и хиггсино (партнеров фотона, Z-частицы и Хиггса). Это наиболее сдержанные суперсимметричные частицы, – они могут невежливо проходить через всю Землю без малейшего влияния на их движение, – а потому могут легко избежать детектирования. [9]Из расчетов, как много таких частиц могло бы быть произведено в Большом взрыве и сохраниться до сегодняшнего дня, физики оценивают, что они должны иметь массу порядка от 100 до 1 000 масс протона, чтобы заместить темную материю. Это интригующее число, поскольку различные изыскания моделей суперсимметричных частиц, точно так же, как теории суперструн, приходят к тому же диапазону масс для этих частиц без какой-либо связи с темной материей и космологией. Это должно быть загадочное и полностью необъяснимое совпадение, если, конечно, темная материя на самом деле состоит из суперсимметричных частиц. Так что поиски суперсимметричных частиц на сегодняшних и приходящих к ним на смену ускорителях могут также выглядеть как поиски самых вероятных кандидатов на темную материю.
Более прямые поиски частиц темной материи, текущих сквозь Землю, также будут на полном ходу через некоторое время, хотя это экстремально трудные эксперименты. Из миллиона или около того частиц темной материи, которые должны проходить через область размером с квартал города каждую секунду, не более одной частицы в день должно оставить какое-либо доказательство в специально разработанном оборудовании, которое многие экспериментаторы выстроили, чтобы обнаружить их. На сегодняшний день подтвержденных обнаружений частиц темной материи не достигнуто. [10]Поскольку приз все еще очень высоко в воздухе, исследователи продвигаются вперед со все большей интенсивностью. Имеется некоторая возможность, что в течение нескольких следующих лет задача идентификации темной материи будет решена.
Окончательное подтверждение, что темная материя существует, и прямое определение ее состава будет большим достижением. Впервые в истории мы сможем узнать нечто, что является одновременно полностью фундаментальным и необычайно неуловимым: строение значительной части материального содержимого вселенной.
Тем не менее, как мы говорили в Главе 10, недавние данные строго указывают, что даже при идентификации темной материи все еще имеется существенный кусок требуемых ухищрений в объяснении эксперимента: наблюдения сверхновых, которые дают доказательство расталкивающей космологической константы, составляющей до 70 процентов полной энергии во вселенной. Как самое захватывающее и неожиданное открытие последнего десятилетия, доказательство космологической константы – энергии, которая наполняет пространство, – требует убедительного завершающего подтверждения. Большое число подходов планируется или уже осуществляется.
Эксперименты по микроволновому фону и здесь играют важную роль. Размер пятен на Рис. 14.4 – где, еще раз, каждое пятно есть область однородной температуры, – освещает общую форму пространственной ткани. Если пространство имеет форму вроде сферы, как на Рис 8.6а, раздувание вовне будет приводить к тому, что пятна будут несколько больше, чем они есть на Рис.14.4b; если пространство имеет форму вроде седла, как на Рис.8.6с, сжатие вовнутрь будет приводит пятна к небольшому уменьшению; и если пространство плоское, как на Рис. 8.6b, размер пятен будет промежуточным. Точные измерения, начатые COBE и с тех пор улучшенные WMAP, жестко подтверждают предположение, что пространство плоское. Эта вещь не только является теоретическим ожиданием, следующим из инфляционных моделей, но оно также абсолютно согласуется с результатами исследования сверхновых. Как мы видели, пространственно плоская вселенная требует полной плотности массы/энергии, равной критической плотности. С обычной и темной материей, дающими вклад около 30 процентов, и темной энергией, дающей вклад около 70 процентов, все впечатляюще сходится вместе.
Читать дальше