Таким образом инфляционная космология объяснила однородность микроволнового фонового излучения, заполняющего пространство, которая в ином случае загадочна.
Инфляция и проблема плоскостности
Вторая проблема, адресуемая инфляционной космологии, имеет дело с формой пространства. В Главе 8 мы установили критерии однородной пространственной симметрии и нашли три способа, которыми ткань пространства может изгибаться. Обращаясь к нашей двумерной визуализации, имеются возможности положительной кривизны (форма подобная поверхности шара), отрицательной кривизны (седловая форма) и нулевой кривизны (форма подобная бесконечной плоской поверхности стола или экрану видеоигры конечных размеров). С ранних дней ОТО физики осознавали, что полная материя и энергия в каждом объеме пространства – плотность материи/энергии – определяет кривизну пространства. Если плотность материи/энергии высока, пространство свернется в форму сферы; это значит, что будет положительная кривизна. Если плотность материи/энергии низка, пространство будет расширятся вовне как седло; это значит, будет отрицательная кривизна. Или, как отмечалось в последней главе, для очень специального количества плотности материи/энергии – критической плотности, равной массе около пяти атомов водорода (около 10 –23грамм) в каждом кубическом метре, – пространство будет лежать точно между этими двумя экстремумами и будет совершенно плоским; это значит, что кривизны не будет.
Теперь о загадке.
Уравнения ОТО, которые лежат в основе стандартной модели Большого взрыва, показывают, что если плотность материи/энергии в начале была в точности равна критической плотности, то она останется равной критической плотности, когда пространство расширяется. [17]Но если плотность материи/энергии была хотя бы чуть-чуть больше или чуть-чуть меньше, чем критическая плотность, последующее расширение уведет ее очень и очень далеко от критической плотности. Чтобы прямо почувствовать числовые величины, отметим, что если через секунду после Большого Взрыва вселенная не дотягивала до критической плотности, имея 99,99 процента от нее, расчеты показывают, что сегодня ее плотность была бы в любом случае уведена вниз до величины 0,00000000001 от критической плотности. Эта разновидность ситуации подобна той, с которой столкнулся скалолаз, который прогуливается по тонкому как бритва уступу с крутым склоном с каждой стороны. Если его шаг направлен прямо по грани, он сможет пересечь уступ. Но даже малейший ошибочный шаг, сделанный чуть слишком влево или вправо, приведет к существенно иному исходу. (И с риском получить одну из слишком далеко идущих аналогий, это свойство стандартной модели Большого Взрыва также напоминает мне душевую много лет назад в студенческом общежитии колледжа: если вы сможете установить кран абсолютно точно, вы сможете получить комфортабельную температуру воды. Но если вы отклонитесь на йоту туда или сюда, вода будет или обжигающая или замораживающая. Некоторые студенты просто прекращали мыться совсем).
Десятилетия физики пытались измерить плотность материи/энергии во вселенной. В 1980е, хотя измерения были далеки от завершения, одна вещь стала определенной: плотность материи/энергии вселенной не является в тысячи и тысячи раз меньше или больше, чем критическая плотность; эквивалентно, пространство искривлено несущественно, или положительно или отрицательно. Это осознание бросило неудобный свет на стандартную модель Большого взрыва. Оно подразумевало, что для соответствия стандартного Большого взрыва наблюдениям некоторый механизм – один из тех, которые никто не может объяснить или идентифицировать, – должен был тонко настроить плотность материи/энергии ранней вселенной экстраординарно близко к критической плотности. Например, расчеты показывают, что через одну секунду после Большого взрыва плотность материи/энергии вселенной должна была находиться в пределах миллионной от миллионой доли процента от критической плотности; если бы материя/энергия отклонилась от критической величины на любое, большее этого мизерного ограничения значение, стандартная модель Большого взрыва предсказала бы плотность материи/энергии сегодня, которая чрезвычайно отличалась бы от того, что мы наблюдаем. Тогда в соответствии со стандартной моделью Большого взрыва, ранняя вселенная была бы сильно похожа на скалолаза, покачивающегося вдоль экстремально узкого склона. Малейшее отклонение в условиях миллиарды лет назад должно было бы привести к сегодняшней вселенной, сильно отличающейся от показанных астрономами измерений. Это известно как проблема плоскостности .
Читать дальше