Это значит, что когда давление отрицательно, имеется соревнование между обычной притягивающей гравитацией, возникающей из обычной массы и энергии, и экзотической отталкивающей гравитацией, возникающей от отрицательного давления. Если отрицательное давление в области достаточно отрицательно, отталкивательная гравитация будет доминировать; гравитация будет расталкивать вещи в стороны сильнее, чем стягивать их вместе. Именно тут космологическая константа появляется на сцене. Космологический член, который Эйнштейн добавил в уравнения ОТО, должен означать, что пространство однородно заполнено энергией, но, что критично, уравнения показывают, что эта энергия имеет однородное отрицательное давление. И, что еще более важно, гравитационное отталкивание отрицательного давления космологической константы преодолевает гравитационное притяжение, происходящее от ее положительной энергии, так что отталкивательная гравитация побеждает в этом соревновании: космологическая константа оказывает всюду отталкивательное гравитационное воздействие . [7]
Для Эйнштейна это было точно то, что доктор прописал. Обычная материя и излучение, распределенные по вселенной, оказывают притягивающее гравитационное воздействие, вынуждая каждый регион пространства притягиваться к каждому другому. Новый космологический член, который он представлял как тоже однородно распределенный по вселенной, оказывает отталкивательное гравитационное воздействие, заставляя каждый регион пространства отталкиваться от каждого другого. При аккуратном выборе величины нового члена Эйнштейн нашел, что вновь открытая отталкивающая гравитационная сила должна точно уравновешивать обычное притягивающее гравитационное воздействие, что дает статическую вселенную.
Более того, поскольку новая отталкивающая гравитационная сила возникает из энергии и давления самого пространства, Эйнштейн нашел, что их сила кумулятивна; сила становится больше при больших пространственных расстояниях, поскольку чем больше вовлечено пространства, тем больше отталкивание наружу. На расстояниях порядка Земли или всей солнечной системы Эйнштейн показал, что новая отталкивательная гравитационная сила неизмеримо мала. Она становится важной только на существенно больших космологических расстояниях, тем самым сохраняя все успехи как Ньютоновской теории, так и его собственной ОТО, когда они применяются недалеко от дома. Короче говоря, Эйнштен нашел, что он может и получить свой пирог и съесть его тоже: он смог сохранить всю привлекательность, все экспериментально подтвержденные свойства ОТО, одновременно наслаждаясь вечной неподвижностью неизменного космоса, того, который ни расширяется, ни сокращается.
С этим результатом Эйнштейн, несомненно, вздохнул облегченно. Какую сердечную боль он мог бы получить, если бы десятилетие суровых исследований, которое он посвятил формулировке ОТО, привело бы в итоге к теории, которая была бы несовместима со статической вселенной, видимой каждому, кто пристально вглядывается в ночное небо. Но, как мы видели, дюжину лет спустя история проделала резкий поворот. В 1929 Хаббл показал, что точечные наблюдения за небом могут вводить в заблуждение. Его систематические наблюдения обнаружили, что вселенная не статична. Она расширяется. Если бы Эйнштейн доверял исходным уравнениям ОТО, он мог бы предсказать расширение вселенной более чем за десять лет до того, как оно было открыто путем наблюдений. Это определенно должно быть поставлено в ряд величайших открытий – это, может быть, самое великое открытие – всех времен. После изучения результата Хаббла Эйнштейн проклял тот день, когда он подумал о космологической константе, и тщательно уничтожил ее в уравнениях ОТО. Он ожидал, что все забудут этот вызывающий сожаление эпизод, и через несколько десятилетий все забыли.
В 1980е, однако, космологическая константа снова всплыла в ослепительной новой форме и указала путь к одному из наиболее драматичных переворотов в космологическом мышлении со времен, когда наш вид впервые этим мышлением заинтересовался.
О прыгающих лягушках и переохлаждении
Если вы поймали взглядом летящий вверх бейсбольный мяч, вы можете использовать закон тяготения Ньютона (или более утонченные уравнения Эйнштейна), чтобы описать его последовательную траекторию. И, если вы проведете требуемые вычисления, вы получите полное понимание того, как движется мяч. Но все еще без ответа останется вопрос: кто или что бросил мяч вверх в начальной точке? Как мяч приобрел начальное направленное вверх движение, чье последовательное разворачивание вы проследили математически? В этом примере небольшое дополнительное исследование в общем случае позволит найти ответ (конечно, за исключением стремления членов высшей лиги объяснить, что мяч просто получил толчок на пути столкновения с лобовым стеклом припаркованного Мерседеса). Но более тяжелая версия аналогичного вопроса стоит на пути основанного на ОТО объяснения расширения вселенной.
Читать дальше