Второй подход, инициированный в 1957 году студентом Уилера Хью Эвереттом, отрицает, что волновая функция когда-либо коллапсирует. Вместо этого любой и каждый потенциальный результат, воплощенный в волновой функции, видит свет дня; однако, свет дня, который каждый видит, распространяется через его собственную отдельную вселенную. В этом подходе, многомировой интерпретации , понятие "вселенная" расширяется, чтобы включить бесчисленные "параллельные вселенные" – бесчисленные версии нашей вселенной, – так что все, что может произойти по предсказаниям квантовой механики, даже если его вероятность ничтожна, происходит, по меньшей мере, в одной копии. Если волновая функция говорит, что электрон может быть здесь, там и чересчур далеко, тогда в одной вселенной ваша копия найдет его здесь; в другой вселенной другая ваша копия найдет его там; а в третьей вселенной еще один вы найдет электрон чересчур далеко. Последовательность наблюдений, которую мы каждый делаем от одной секунды к следующей, таким образом отражает реальность, имеющую место только в одной части этой чудовищной, бесконечной сети вселенных, каждая из которых населена копиями вас и меня и любого другого, кто еще живет во вселенной, в которой определенное наблюдение дало определенный результат. В одной такой вселенной вы сейчас читаете эти слова, в другой вы прервались, чтобы полазить по Интернету, еще в другой вы с большим волнением дожидаетесь, когда поднимется занавес перед вашим дебютом на Бродвее. Это похоже на то, как если бы был не единственный блок пространства-времени, изображенный на Рис. 5.1, а бесконечное количество, среди которых каждый реализует один возможный путь сбытий. В многомировой интерпретации, следовательно, ни один потенциальный результат просто не остается потенциальным. Волновые функции не коллапсируют. Каждый потенциальный результат проявляется в одной из параллельных вселенных.*
(*)"Стоит отметить, что при всей его экстравагантности результат Эверетта является следствием аккуратного решения уравнения Шредингера для объединенной системы, включающей как измеряемый микрообъект, так и экспериментатора с его приборами и памятью, причем без вводимого руками коллапса волновой функции. Решение никто не опроверг с момента его появления в 1957, но при этом многомировая интерпретация многими была воспринята как нечто, о чем не принято говорить в приличном физическом обществе. (Что, кстати, вынудило Эверетта оставить науку). Так Бор незадолго до своей смерти отказался обсуждать с Эвереттом его скандальный результат. Нобелевский лауреат В.Л. Гинзбург на вопрос о подходе Эверетта сухо заметил: "Я в это не верю". – (прим. перев.)"
Третье предложение, разработанное в 1950е Дэвидом Бомом, – тем самым физиком, с которым мы сталкивались в Главе 4, когда обсуждали парадокс Эйнштейна-Подольского-Розена, – принимает совершенно другой подход. [8]Бом утверждал, что частицы, такие как электроны, обладают определенными положениями и определенными скоростями, точно как в классической физике, и точно так, как на это надеялся Эйнштейн. Но, в соответствии с принципом неопределенности, эти свойства скрыты от рассмотрения; они являются примерами скрытых переменных, отмеченных в Главе 4. Вы не можете определить обе переменные одновременно. По Бому такая неопределенность представляет предел того, что мы можем знать, но ничего не предполагает о действительных атрибутах самих частиц. Его подход не разрушается от столкновения с результатом Белла, поскольку, как мы обсуждали выше в конце Главы 4, обладание определенными свойствами, запрещенными принципом неопределенности, не исключено; исключена только локальность, а подход Бома нелокален. [9]Напротив, Бом представил, что волновая функция частицы является другим, отдельным элементом реальности, таким, который существует в дополнение к самой частице. Нет частиц или волн, как полагала философия дополнительности Бора; в соответствии с Бомом, есть частицы и волны. Более того, Бом постулировал, что волновая функция частицы взаимодействует с самой частицей – она "направлят" частицу или "помыкает" ей – таким образом, что определяет ее последовательное движение. В то время, как этот подход полностью согласуется с успешными предсказаниями стандартной квантовой механики, Бом нашел, что изменения волновой функции в одном месте могут немедленно подтолкнуть частицу в удаленном месте, что явно обнаруживает нелокальность его подхода. В эксперименте с двумя щелями, например, каждая частица двигается через одну щель или через другую, тогда как их волновые функции двигаются через обе щели и допускают интерференцию. Поскольку волновая функция управляет движением частицы, не будет уж очень удивительным, что уравнения показывают, что частица охотнее приземляется там, где величина волновой функции велика, и она неохотно приземляется там, где последняя мала, что объясняет данные на Рис. 4.4. В подходе Бома нет отдельного этапа коллапса волновой функции, поскольку, если вы измеряете положение частицы и находите ее здесь, это в самом деле место, возле которого она была моментом раньше, чем измерение имело место.
Читать дальше