Фиг. 113. Молекулы в твердом теле, жидкости и газе.
а— в твердых телах молекулы образуют правильную систему; все истинно твердые тела — кристаллические. Молекулы сохраняют более или менее постоянное положение, но по мере нагревания тела они колеблются все больше и больше; б— в жидкостях молекулы расположены близко друг к другу, как в твердых телах, но свободно перемещаются среди своих соседей. Чем выше температура, тем быстрее движение и тем более бурно происходят столкновения молекул; в— в газах молекулы находятся далеко друг от друга и быстро движутся, время от времени сталкиваясь (чем выше температура, тем быстрее они движутся). Во время столкновений молекулы должны отталкиваться, в остальное время их действие друг на друга пренебрежимо мало.
При растяжении твердого тела отталкивание уменьшается больше, чем притяжение, и снова возникает напряжение, сопротивляющееся нашим усилиям. Опыты показывают, что притяжение действует не на очень больших расстояниях, а лишь на расстоянии одного или двух диаметров молекул. [71] Из каких опытов можно получить представление о таких малых величинах? Для жидкостей это делают путем сочетания измерений поверхностного натяжения и простых измерений теплоты испарения. Качественно убедиться в том, что пределы действия молекулярных сил очень малы, можно с помощью простых опытов. Попытайтесь соединить куски металла, прижимая один к другому. Попытайтесь проделать то же самое с только что разбитым стеклом. Достаточно очень небольшого нагревания, чтобы устранив трещину, начавшую образовываться в стекле.
Между молекулами жидкости, как мы полагаем, действуют подобные же силы: отталкивание на очень малых расстояниях (например, при столкновениях) и притяжение, распространяющееся более далеко. (Тут как будто возникает противоречие. Жидкости должны были бы хоть немного растягиваться при растяжении, на самом же деле при попытке растяжения они распадаются на части и в них образуются пузырьки пара. Однако если позаботиться о тщательном удалении растворенного воздуха, жидкость можно заставить выдержать растяжение и вести себя необычным образом. Например, вода или ртуть держатся в верхней части барометра намного выше «высоты атмосферного столба», а сифон может работать в вакууме! Жидкости оказываются «слабыми, как вода» только в результате вредного влияния маленьких пузырьков воздуха.)
Молекулярное объяснение поверхностного натяжения . Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения. Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения. Представим себе состояние молекулы А в середине сосуда с водой (фиг. 114). Со всех сторон ее толкают другие молекулы. Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю.
Фиг. 114. Силы, действующие на молекулы, в жидкости.
а— дальнодействующее притяжение ближайших соседей; б— короткодействующее отталкивание близких соседей при столкновении; в— равнодействующая притяжения (нуль для А , направлена вниз для В ); г — равнодействующая отталкивания (нуль для А , направлена вверх для В ).
Теперь рассмотрим другую молекулу В , находящуюся на поверхности воды. Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху. Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса. Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А , испытывать равномерное притяжение со всех сторон. Молекулы на поверхности, подобно молекуле В , будут втягиваться внутрь . Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения (небольшое углубление на поверхности также исчезнет, хотя это менее очевидно); в результате притяжения молекул все неровности на поверхности будут сглаживаться (фиг. 115).
Читать дальше