Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Построение графика с указанием возможных ошибок опыта

Если мы желаем яснее обнаружить наличие погрешностей в полученных нами данных, мы можем превратить каждую наносимую на график точку в пятно и представить таким образом погрешности измерения в величине времени и расстояния (см. фиг. 10, а , где точки, отвечающие измеренным значениям, заменены пятнами, характеризующими погрешность результата).

Измерение времени менее надежно, чем измерение расстояния, поэтому каждое пятно размыто больше в ширину, чем в высоту.

Поскольку мы не знаем действительных значений ошибок наших опытов, а знаем лишь их вероятное значение, каждое пятно должно простираться на неопределенное расстояние от соответствующей точки. Однако мы должны указать, что внешние области пятна отвечают маловероятным ошибкам. Это можно было бы сделать, затушевав пятно, как показано на фиг. 10, б . Рисовать такое пятно — слишком утомительная процедура, поэтому обычно принято изображать ошибки прямоугольником определенного размера, таким, чтобы вероятность нахождения истинного значения в пределах прямоугольника имела какое-то стандартное значение, скажем 1/ 2. Размеры прямоугольника показывают при этом ошибки, которые, по мнению экспериментатора, могут иметь место.

Фиг 10 Изображение ошибки на графиках Физики часто приводят ошибки или - фото 13

Фиг. 10. Изображение ошибки на графиках.

Физики часто приводят ошибки или погрешности на графиках, но объединяют их и выражают погрешности величин, откладываемых на графике по горизонтали и по вертикали, в виде погрешности величины, откладываемой по вертикали. Экспериментатор оценивает вероятную ошибку Δy , допущенную им при измерении величины, откладываемой по вертикали. Он оценивает также вероятную ошибку Δх ; величины, откладываемой по горизонтали, а затем задает вопрос: «Если я допустил такую ошибку Δх , то как велика при этом будет ошибка величины у , которая бы в точности ее учитывала?». Это дает ему значение Δy °, эквивалентное допущенной им ошибке Δх . Он проводит вертикальную прямую длиной ( Δy + Δy °) с центром в экспериментальной точке. Тогда каждой точке, наносимой на график, будет соответствовать такое пятно, выражающее величину погрешности, как показано на фиг. 10, в .

Нахождение скорости при помощи касательных

Если бы мы могли построить график изменения скорости со временем, то это позволило бы непосредственно изучать ускорение.

Фиг 11 Скорость равна наклону касательной Для этого необходимо оценить - фото 14

Фиг. 11. Скорость равна наклону касательной.

Для этого необходимо оценить значение скорости в различные моменты времени.

Мы можем определить скорость, проводя касательные к кривой, описывающей зависимость пройденного расстояния от времени. Если провести касательную к кривой в некоторой точке, то наклон касательной даст скорость тела в данный момент времени и в данном месте. Чтобы убедиться в этом, выберем некоторую точку Р на этой кривой (фиг. 11), а затем переместимся вверх по кривой в точку Q , соответствующую более позднему моменту времени. Находясь в точке Р , тело уже прошло некоторое расстояние за какой-то промежуток времени. От Р до Q тело проходит еще небольшой отрезок пути Δs за малый промежуток времени Δt .

Тогда средняя скорость в интервале между Р и Q равна отношению

[РАССТОЯНИЕ, ПРОЙДЕННОЕ ОТ РДО Q]/[ВРЕМЯ ПЕРЕМЕЩЕНИЯ ОТ РДО Q]

или

СРЕДНЯЯ СКОРОСТЬ = Δ s PQ/Δ t PQ(см. фиг. 11, a ),

= ВЫСОТА/ОСНОВАНИЕ МАЛОГО ТРЕУГОЛЬНИКА PQM ,

= ВЫСОТА/ОСНОВАНИЕ ЛЮБОГО ТРЕУГОЛЬНИКА больших размеров, подобного треугольнику PQM ,

= h/ bна фиг. 11, а ,

= наклон хорды, соединяющей точки Р и Q , или

ВЫСОТА/ОСНОВАНИЕ.

Если точки Р и Q расположены очень близко одна от другой, то соединяющая их линия почти совпадает с касательной к кривой в «точке» PQ , и скорость по-прежнему определяется наклоном этой «касательной». В пределе, как говорят в математике, когда точка Р приближается к Q , хорда превращается в касательную к кривой в этой точке; величины Δs и Δt становятся равными нулю, но отношение Δs / dt по-прежнему имеет вполне определенное значение, равное отношению h '/ b ' в любом треугольнике больших размеров, у которого касательная является гипотенузой, как на фиг. 11, б . Если PQ — хорда, то ее наклон определяет среднюю скорость движения от точки Р к точке Q. В пределе, когда Р и Q совпадают, наклон касательной определяет скорость в момент времени, соответствующий точке Р , в которой проводится касательная. Дело в том, что наклон касательной совпадает с наклоном бесконечно короткого отрезка кривой, характеризующего движение в данной точке. Проводя касательные во многих точках кривой и измеряя наклон этих касательных, мы могли бы определить несколько значений скорости, по которым можно было бы построить новый график, выражающий зависимость скорости от времени .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x