Но это же абсурд, потому что расстояния от Аспена до Солнца (в полдень) и от Кливленда до Солнца (тоже в полдень) различаются на два с половиной километра — 250 000 сантиметров — из-за того, что Аспен и Кливленд располагаются на разной высоте над уровнем моря. Чтобы такое точное расстояние имело физический смысл, мы должны очень точно указать точку на поверхности Земли, в которой мы производим измерения. Даже если мы будем измерять расстояние между центром Земли и центром Солнца (самый разумный выбор), то это подразумевает, что мы предварительно измерили диаметры Земли и Солнца с точностью до сантиметра, не говоря уже о том, что произвести на практике измерения астрономических расстояний с такой точностью крайне проблематично, если вообще возможно.
Очевидно, что, написав число 14 960 000 000 000, мы на самом деле имели в виду приблизительное, а не точное значение. Но с какой точностью мы на самом деле знаем расстояние от Земли до Солнца? Подобного вопроса не возникает, когда мы записываем число в виде 1,4960∙10 13см. Принято считать, что в экспоненциальной записи в мантиссе сохраняются только достоверные цифры, и данная запись говорит о том, что реальное расстояние лежит в пределах между 1,49595∙10 13см и 1,49605∙10 13см. Если бы расстояние было известно нам с вдесятеро лучшей точностью, мы записали бы его в виде: 1,49600∙10 13см.
Таким образом, существует огромная разница между 1,4960∙10 13см и 14 960 000 000 000 см. Чтобы представить, насколько она огромна, подсчитаем абсолютную погрешность приведенного числа. Эта погрешность составляет 0,0001∙10 13см — один миллиард сантиметров, или десять тысяч километров, — почти диаметр Земли!
«И это физики называют точным результатом?» — спросите вы. Да. Несмотря на то что абсолютная величина погрешности — миллиард сантиметров — выглядит чудовищной, она составляет меньше одной десятитысячной расстояния от Земли до Солнца. Если бы вы с такой же точностью измерили свой рост, вы узнали бы его с точностью до двух десятых долей миллиметра.
Красота записи 1,4960∙10 13состоит еще и в том, что множитель 10 13сразу же задает «масштаб» числа, а мантисса 1,4960 указывает на его точность. Чем больше десятичных разрядов содержит мантисса, тем точнее мы знаем физическую величину. Глядя на число, записанное в экспоненциальной форме, вы сразу же понимаете, чем можно пренебречь. Масштаб 10 13см говорит, что физические эффекты, проявляющиеся на масштабах в несколько сантиметров, метров, километров и даже тысяч километров, скорее всего, можно не учитывать. А как я говорил в предыдущей главе, самое главное в физике — это понимать, чем можно, а чем нельзя пренебречь.
До сих пор я игнорировал, возможно, наиболее важный факт, который придает числу 1,4960∙10 13см физический смысл. Это записанное после него сокращение «см». Без этих «см» мы бы не знали, к какой физической величине относится число, а сакраментальное «см» говорит о том, что это расстояние. Данная спецификация называется размерностью физической величины. Размерность связывает абстрактные математические числа с физическим миром реальных явлений. Сантиметры, дюймы, километры, световые года — это все размерности длины, которые могут использоваться для измерения расстояний.
Вероятно, самым удивительным свойством окружающего мира, позволяющим упростить его картину, является то, что в природе существуют только три независимые размерные величины: длина, время и масса [6] Некоторые добавляют к трем основным размерностям еще электрический заряд, но в этом нет необходимости. Размерность заряда может быть выражена через размерности длины, времени и массы.
. Размерности всех остальных величин могут быть выражены через комбинацию трех основных. Неважно, измеряете ли вы скорость в милях в час, метрах в секунду или стадиях в неделю, — все это лишь различные способы выражения расстояния, деленного на время.
Это свойство имеет замечательные последствия. Из-за того что в природе существуют только три независимые размерные величины, количество комбинаций, которые можно из них сконструировать, ограничено. Это означает, что каждая физическая величина связана с любой другой физической величиной некоторым простым способом, и это существенно ограничивает количество различных математических соотношений, возможных в физике. Не побоюсь утверждать, что не существует более важного инструмента, используемого физиками, чем размерности физических величин. Размерности не только облегчают запоминание уравнений, но и существенно упрощают картину физического мира. Как я покажу позже, анализ размерностей дает важный ориентир для разумной интерпретации той информации, которую мы получаем от наших органов чувств или измерительных приборов. Описывая физические величины, мы оперируем их размерностями.
Читать дальше