Напротив, при поглощении одного кванта энергии h атом переходит от состояния Е 2 к состоянию Е 1. Это, между прочим, мысль, которую уже в 1912 г. применил Дж. Дж. Томсон для объяснения характеристических К-, L-, М-излучений элементов. Так, по Бору, возникают линейчатые спектры.
Первую победу эта теория одержала после объяснения Бором спектра водорода. В 1885 г. Иоганн Якоб Бальмер (1825-1898) указал на пропорциональность частотлиний, лежащих в видимой области, выражению
1/2 2-1/m 2причем т может принимать все значения ряда
чисел 3, 4, 5, 6 и т. д. Теперь Бор нашел для своих круговых орбит (а Зоммерфельд также для допущенных им эллипсов) дискретные уровни энергии, пропорциональные 1/m 2коэффициент пропорциональности -
универсальная постоянная. Следовательно, частоты, соответствующие переходам от одного из этих уровней к
другому, согласно соотношению (I) точно уДовлетво-* ряют формуле Бальмера. Коэффициент пропорциональности - константа Ридберга - получается в соответствии с очень точными измерениями Ф. Пашена (гл. 4). При этом оказалось, что первоначальная теория Зом-мерфельда имеет то преимущество, что она для любого уровня энергии невозбужденного атома допускает несколько орбит. При возбуждении атома электрическим или магнитным полем различные орбиты первоначально единого уровня получают немного отличающиеся между собой значения энергии; уровень «расщепляется», и этому соответствует расщепление спектральных линий согласно приведенной формуле (1). Так стала возможной теория эффекта Штарка, которую дали еще в 1916 г. Карл Шварцшильд (1873-1916) и П. С. Эпштейн. В том же году Дебай и Зоммерфельд разработали теорию нормального эффекта Зеемана.
Если атомное ядро окружено более чем одним электроном, как это имеет место у всех элементов, за исключением водорода, ионизованного гелия и других многократно ионизованных атомов, то вычисление квантовых траекторий и уровней энергии удается только с приближением. Но и тогда атомная модель Бора дает общую систематику линейчатых спектров, включая спектры, лежащие в области рентгеновских лучей. Благодаря квантовым условиям становится возможной также систематика полосатых спектров, испускаемых многоатомными молекулами. Экспериментальные факты, накопленные спектроскопистами в течение десятилетий, сделали возможным глубокое объяснение свойств электронных оболочек атомов в свете теории квантов.
Под руководством В. Косселя (1916) был открыт путь для понимания казавшейся ранее таинственной периодической системы химических элементов. В 1913 г. рентгеноскопия окончательно установила, что эта система представляет собой классификацию элементов соответственно возрастанию зарядов ядер. Но как объ-
яснить приблизительную периодичность химических свойств и спектральных линий? Этот вопрос совершенно висел в воздухе до 1925 г., когда С. Гоудсмит и Г. Е. Уленбек приписали на основе спектральных данных электрону магнитный момент и момент вращения, «спин», - две величины, тесно связанные с константой Планка. В том же году В. Паули установил «принцип исключения», утверждающий, что в электронной оболочке атома не существует двух электронов, которые имели бы одинаковые значения всех квантовых чисел. Исследование, шаг за шагом контролируемое спектральным наблюдением, показало, почему первые периоды системы содержат по 8 элементов, следующие по 16, затем по 32, почему, далее, каждый период начинается со щелочного металла и заканчивается благородным газом. Еще раз, таким образом, два совершенно различных круга идей - старый из химии и новый из квантовой теории - неожиданно встретились и естественно объединились.
Благодаря атомной модели Бора новый подъем испытала также теория магнетизма. Движение электронов по определенным орбитам возобновляло гипотезу Ампера о молекулярных токах (гл. 5). Теперь присоединилось еще указание величины момента каждого элементарного магнита. Это - целое кратное «магнетона Бора» - величины, опять-таки тесно связанной с константой Планка h. Правильность этого теоретического следствия подтвердили в 1921 г. В. Герлах и О. Штерн, изучая магнитное отклонение лучей атомов серебра, причем магнитный момент этих атомов оказался точно равным одному магнетону.
Теория Бора при всех своих больших и прочных успехах имела, однако, одну систематическую ошибку.
Читать дальше