Макс Лауэ - ИСТОРИЯ ФИЗИКИ

Здесь есть возможность читать онлайн «Макс Лауэ - ИСТОРИЯ ФИЗИКИ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: МОСКВА, Год выпуска: 1956, Издательство: ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    ИСТОРИЯ ФИЗИКИ
  • Автор:
  • Издательство:
    ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ
  • Жанр:
  • Год:
    1956
  • Город:
    МОСКВА
  • ISBN:
    нет данных
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

ИСТОРИЯ ФИЗИКИ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «ИСТОРИЯ ФИЗИКИ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ИСТОРИЯ ФИЗИКИ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «ИСТОРИЯ ФИЗИКИ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Остановимся несколько подробнее на определении, которое дает температуре второе начало термодинамики. При этом рассматривают обратимый круговой процесс, в котором тело сначала расширяется изотермически, получая определенное количество тепла, а потом продолжает расширяться без получения или отдачи тепла, затем при отдаче тепла изотермически сжимается и, наконец, испытывает дальнейшее сжатие без теплового обмена с окружающей средой как раз таким образом, что возвращается в начальное состояние. Согласно определению, температуры обоих изотермических изменений состояния относятся между собой как полученное количество тепла к отданному. Закон устанавливает, что это отношение не зависит от рода тела, которое подвергают круговому процессу. Температура определяется с помощью коэффициента пропорциональности, который выбирают таким образом, чтобы разность температур между точками замерзания и кипения воды равнялась 100 градусам. Так получается абсолютная термодинамическая температурная шкала; для Германии она закреплена в качестве официальной шкалы государственным законом от 7 августа 1924 г. Измерения показывают, что точка замерзания воды по этой шкале соответствует 273 градусам. Для обыденной жизни с этой шкалой достаточно хорошо согласуются данные ртутного и спиртового термометров, имеющих деления по Цельсию.

Оба количества теплоты, посредством которых определяется температура, являются, как показывает опыт, всегда положительными величинами. Не существует никаких отрицательных абсолютных температур; термодинамическая шкала имеет абсолютную нулевую точку. Этого можно было бы избежать, если за меру температуры принять приближенную функцию этой температуры, например ее логарифм, что является вполне возможным, так как не противоречит никакому закону природы. Если так не поступают, то это происходит потому, что в нашем понятии температуры имеется еще конвенциональный элемент, как правильно указал Эрнст Мах (1838-1916). Если бы это сделали, то шкала уходила бы в бесконечность в направлении отрицательной температуры и можно было бы избежать иллюзии, что нельзя дальше охлаждать тело при достижении, скажем, 1° К. Уже теперь достигнуты гораздо более низкие температуры. Фактически абсолютная нулевая точка недостижима, как это показал в 1906 г. Вальтер Нернст (1864-1941).

Блэк и его современники считали теплоту неразрушимым и несоздаваемым веществом, так как, согласно опыту, при выравнивании температур одно тело получает точно столько же теплоты, сколько другое отдает. Даже в случае созданной Джемсом Уаттом (1736-1819) паровой машины, совершившей в 1770 г. переворот в экономике, сначала никто не признавал, что подведенная к паровому котлу теплота частично превращается в механическую работу и как теплота, таким образом, теряется. Из-за этого заблуждения гениальная интуиция Сади Карно (1796-1832) о том, что работа паровой машины определяется всеобщим законом перехода тепла от более высоких к более низким температурам, сначала не принесла никаких плодов. Лишь после открытия эквивалентности теплоты и энергии Рудольф Клаузиус (1822-1888) смог вывести отсюда второе начало (гл. 9). Уже из этого видно, какой переворот в физике совершил закон сохранения энергии.

Совершенно другим и совсем не простым вопросом является вопрос о практическом применении термодинамической температурной шкалы. Использованный для ее определения круговой процесс есть мысленный опыт, который нельзя выполнить ни в одном случае с полнейшей точностью. Но все же развитие термодинамики дало средства и пути для перехода от других шкал к термодинамической. Мы не будем здесь заниматься этим, но только укажем, что при измерении высоких температур с большим успехом используют тепловое излучение, тем более, что оно связано с температурой источника излучения простыми и теоретически хорошо обоснованными законами (гл. 13). Таким путем приходят также к определению температур звезд, что имеет величайшее значение для астрономии.

Старейшими средствами понижения температуры были охлаждающие смеси и охлаждение быстро испаряющихся жидкостей. Когда такого рода возможности были исчерпаны, их место постепенно заняло открытое в 1852 г. Джемсом Прескотом Джоулем (1818-1889) и Вильямом Томсоном (позднее лорд Кельвин, 1824- 1907) и по их имени названное явление. Предварительно достаточно охлажденный газ при выпускании через насадку переходит из области более высокого давления в область более низкого давления и при этом происходит небольшое охлаждение. Отсюда постепенно развилась в XIX столетии холодильная техника, для промышленного развития которой особенно много сделал Карл Линде (1842-1934). Характерной частью холодильной машины является «противоток», в котором уже испытавшие расширение и охлаждение части газа охлаждают те части газа, которые еще не испытывали расширения. Можно этот процесс продолжать до тех пор, пока будет достигнута критическая температура и газ будет частично превращен в жидкость. Таким способом в 1883 г. Зигмунд Флорентий Вроблевский (1845-1888) и Карл Станислав Ольшевский (1846-1915) достигли ожижения в значительных количествах «постоянных» газов - кислорода и азота; в 1898 г. Джемс Дьюар (1842-1923) произвел ожижение водорода, а в 1908 г. Камерлинг-Оннес (1853-1926) осуществил чреватое большими последствиями ожижение гелия (гл. 5). Тем самым был превращен в жидкость последний «постоянный» газ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «ИСТОРИЯ ФИЗИКИ»

Представляем Вашему вниманию похожие книги на «ИСТОРИЯ ФИЗИКИ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «ИСТОРИЯ ФИЗИКИ»

Обсуждение, отзывы о книге «ИСТОРИЯ ФИЗИКИ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x