Александр Китайгородский - Физика для всех. Книга 3. Электроны

Здесь есть возможность читать онлайн «Александр Китайгородский - Физика для всех. Книга 3. Электроны» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1979, Издательство: Наука, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для всех. Книга 3. Электроны: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для всех. Книга 3. Электроны»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для всех. Книга 3. Электроны», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы, конечно, видели радиолокационные антенны — проволочные сферические зеркала, которые все время находятся в движении — они обозревают пространство. Можно заставить зеркало локатора совершать самые различные движения, например так, чтобы луч двигался, исчерчивая пространство строчками или окружностями. При такой работе можно не только определить дальность самолета, но и следить за траекторией его движения.

Этим способом ведут самолет на посадку в условиях отсутствия видимости. Такая задача может быть возложена и на человека, и на автомат.

Радиолокатор можно «обмануть». Во-первых, объект можно закрыть материалами, которые поглощают радиоволны. Для этой цели годятся угольная пыль, каучук. При этом вдобавок, чтобы уменьшить коэффициент отражения, покрытия выполняют гофрированными, заставляя таким методом львиную долю излучения рассеиваться беспорядочно во все стороны.

Если с самолета сбрасывать пачками полоски алюминиевой фольги или металлизированного волокна, то радиолокатор будет полностью дезориентирован. Впервые этот прием применили англичане еще во время второй мировой войны. Наконец, третий способ состоит в том, чтобы заполнить эфир ложными радиосигналами.

Радиолокация — интереснейший раздел техники, находящий широкое применение для многих мирных целей и без которого сейчас невозможно мыслить средства обороны.

Соперником радиолокатора является лазер. Принципы локации объектов с помощью лазера не отличаются от описанных выше.

Радиолокационные принципы лежат в основе связи между космическими кораблями и Землей. Радиотелескопы расположены так, чтобы не терять корабль из вида. Их антенны имеют огромные размеры до сотен метров. Нужда в таких больших антеннах объясняется необходимостью послать очень сильный сигнал и принять слабый сигнал от радиопередатчика. Естественно, что очень важно иметь узкий радиолуч. Если антенна работает на частоте 2,2 миллиарда колебаний в секунду (длина волны около 1 см), то на расстоянии до Луны луч размывается всего лишь до диаметра в 1000 км. Правда, когда луч доберется До Марса (300 миллионов километров), то его диаметр уже будет равен 700 000 км.

ТЕЛЕВИДЕНИЕ

Поскольку 99 читателей из 100 ежедневно проводят час-другой около телевизора, было бы несправедливо не сказать несколько слов об этом великом изобретении. Сейчас речь пойдет лишь о принципах телевизионной передачи.

Идея передачи изображения на расстояние сводится к следующему. Передаваемое изображение разбивается на мелкие, квадраты. Физиолог подскажет, каков должен быть размер квадрата, чтобы глаз перестал замечать изменения яркости внутри этого изображения. Световая энергия каждого участка изображения может быть при помощи фотоэлектрического эффекта преобразована в электрический сигнал. Надо придумать способ, каким образом считывать эти сигналы. Конечно, это проводится в строго определенной последовательности, как при чтении книги. Эти электрические сигналы накладываются на несущую электромагнитную волну совершенно таким же способом, как это делается при радиопередаче. И далее события разыгрываются вполне тождественно радиосвязи. Модулированные колебания усиливаются и детектируются. Телевизор должен преобразовать электрические импульсы в видимое изображение.

Передающие телевизионные трубки носят название супериконоскопа, суперортикона и видекона. С помощью линзы изображение проектируется на фотокатод. Наиболее распространенными фотокатодами являются кислородно-цезиевый и сурьмяно-цезиевый. Фотокатод монтируется в вакуумном баллоне вместе с фотоанодом.

В принципе можно было бы передавать изображение, поочередно проектируя световой поток от каждого элемента изображения. В этом случае фототок должен протекать только в течение короткого времени, пока длится передача каждого элемента изображения. Однако такая работа была бы неудобна, и в передающей трубке, используется не один фотоэлемент, а большое их количество, равное числу элементов, на которое разлагается передаваемое изображение. Эта приемная пластинка называется мишенью и выполняется в виде мозаики.

Мозаика — это топкая пластинка слюды, с одной стороны которой нанесено большое количество изолированных крупинок серебра, покрытых окисью цезия. Каждое зернышко — фотоэлемент» С другой стороны слюдяной пластинки нанесена металлическая пленка. Между каждым зерном мозаики и металлом как бы образуется маленький конденсатор, который заряжается электронами, выбитыми из катода. Ясно, что заряд каждого конденсатора будет пропорционален яркости соответствующего места передаваемого изображения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для всех. Книга 3. Электроны»

Представляем Вашему вниманию похожие книги на «Физика для всех. Книга 3. Электроны» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Китайгородский - Физика – моя профессия
Александр Китайгородский
Александр Дурасов - Чужой для всех. Книга 3.
Александр Дурасов
Александр Китайгородский - Физика для всех. Книга 4. Фотоны и ядра
Александр Китайгородский
Александр Китайгородский - Физика для всех. Движение. Теплота
Александр Китайгородский
Отзывы о книге «Физика для всех. Книга 3. Электроны»

Обсуждение, отзывы о книге «Физика для всех. Книга 3. Электроны» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x