1 ...5 6 7 9 10 11 ...146 В физике, как и в других науках, существует ряд областей, которые более или менее полно охвачены теориями, гипотезами и предположениями. Развитие науки заключается в том, что в то время как правильно установленные факты остаются незыблемыми, теории постоянно изменяются, расширяются, совершенствуются и уточняются. В процессе этого развития мы неуклонно приближаемся к истинной картине окружающей нас природы, понимание которой необходимо для того, чтобы все более полно овладевать и управлять этой природой. Наиболее мощные толчки в развитии теории мы наблюдаем тогда, когда удается найти эти неожиданные экспериментальные факты, которые противоречат установившимся взглядам. Если такие противоречия удается довести до большой степени остроты, то теория должна измениться и, следовательно, развиться.
Таким образом, основным двигателем развития физики, как и всякой другой науки, является отыскание этих противоречий. Отсюда мы получаем основу для объективной оценки научного достижения, не имеющего непосредственного применения на практике. Нахождение всякого нового явления в природе надо оценивать тем значительнее, чем больше изменений оно может потребовать от существующих в данное время взглядов или теорий. Естественно, что правильное понимание значения работы наиболее важно установить самому исследователю, так как это направляет его искания. Мы думаем, что, именно руководствуясь этими соображениями, ученый-экспериментатор и должен составлять план своей работы, понимая этот план, конечно, в широком смысле, как общую целеустремленность.
Для того чтобы вы могли составить себе представление о цели и значении результатов наших работ по изучению свойств жидкого гелия, мне необходимо дать хотя бы самую общую картину тех теоретических взглядов, с которыми они связаны.
За последние 50 лет на развитие экспериментальной физики наибольшее влияние оказали два теоретических воззрения. Первое — это атомистический взгляд на вещество. Развитие этого взгляда, в особенности когда оно было объединено с термодинамическими законами, дало ряд блестящих обобщений, наиболее значительное из которых — это, конечно, кинетическая теория материи. Но такое успешное развитие в начале этого века пришло к одному из любопытнейших тупиков. Из развития теоретических обобщений выходило, что равновесие между веществом и излучением невозможно, так как получалось, что вся энергия теплового движения атома должна была непрерывно переходить в лучистую энергию. Это заключение хорошо известно физикам и носит обычно название парадокса Рэлея — Джинса. История развития этого противоречия поучительна, поэтому позвольте на ней остановиться.
В этом случае как-то особо резко проявилось различное отношение ученых к теории. Ведь существует целый ряд физиков, которые склонны благодаря своему внутреннему консерватизму видеть в уже хорошо освоенных ими теориях нечто незыблемое и постоянное. Любопытно отметить, что это отношение к теории распространено гораздо больше на континенте, чем в Англии. Большинство ведущих английских ученых обычно отличается тем, что они главное значение придают эксперименту, рассматривая теорию как вспомогательное орудие. Более ста сорока лет тому назад еще Дэви сказал, что «один хороший эксперимент стоит больше изобретательности ньютоновского ума» [ 1 ] Буквально Дэви сказал: «One good experiment is worth more than the ingenuity of a brain like Newton's» (1799).
. Эта фраза часто повторяется и по сей день. Любили ее цитировать такие современные ученые, как Дж. Дж. Томсон, Резерфорд. Ее надо рассматривать, конечно, как гиперболу, как лозунг протеста против обожествления теории. Любопытно, что противоречие Рэлея — Джинса получило в Германии название «катастрофы Джинса — Рэлея»— этим эпитетом как бы оттенялся роковой характер для теории этого замечательного научного противоречия.
Мы знаем, результат этой «катастрофы» был чрезвычайно плодотворен для науки. Из нее родилась теория квантов. Ее и надо считать для развития современной физики после атомизма вторым по своей значительности теоретическим воззрением. Если бы всякая катастрофа вела к таким крупным благотворным последствиям, как эта, то мы могли бы только пожелать, чтобы таких «катастроф» было больше. История показывает, что наука по-настоящему двигается вперед, главным образом, подобными «катастрофами» малого и великого порядка.
Как многим из вас, наверное, известно, первым нашел выход из этого тупика Планк. Выход был прост и на первой стадии показался большинству чисто формальным. Несколько преобразовав классическую формулу излучения, введя новую постоянную, Планк показал, что отсутствие равновесия между веществом и излучением можно было устранить. Но понять настоящий глубокий и универсальный смысл этой постоянной, носящей по сей день имя Планка, удалось несколько позже. Физика обязана этим Эйнштейну — он первый понял фундаментальное значение открытия Планка и дал ему более общее физическое толкование, которое носит название закона Эйнштейна. Мне кажется, что по своим практическим последствиям для развития науки эта замечательнейшая работа Эйнштейна сыграла значительно большую роль, чем его знаменитая теория относительности.
Читать дальше
Конец ознакомительного отрывка
Купить книгу