Как видим, анализ рентгеновского и оптического излучения источника Скорпион Х-1 позволил получить ряд важных выводов о его природе и вскрыть его совершенно неожиданные, дотоле неизвестные в астрономии свойства. Этот источник по своим общим характеристикам оказался не уникальным. Приблизительно такие же свойства были обнаружены и у другого источника, Лебедь Х-2, отождествляемого с любопытной звездой 15-й величины.
Естественно, что сразу же после открытия галактических рентгеновских звезд теоретики стали размышлять об их природе и прежде всего об источниках огромной энергии их рентгеновского излучения. Уж такова натура теоретиков; хотя информация о рентгеновских звездах тогда была совершенно не достаточна (она и сейчас, мягко выражаясь, не избыточна...), недостатка в различных гипотезах и теориях не было. Не надо быть, однако, слишком строгим к теоретикам — они верны человеческой природе. Очень уж хотелось, и это так естественно, понять сущность этих удивительных объектов... В то время «в воздухе чувствовалось», что открытие нейтронных звезд уже не за горами. Напомним, что это было за несколько лет до открытия пульсаров. Первая идея объяснения природы нейтронных звезд была простая и, если можно так выразиться, «лобовая». Спектр наблюдаемого излучения не исключал возможности его тепловой природы, т. е. возможности описания его формулой Планка с температурой порядка десяти миллионов кельвинов. Однако идея о том, что рентгеновские источники — это горячие нейтронные звезды, быстро обнаружила свою несостоятельность (см. § 19).
«Новая эпоха» в рентгеновской астрономии качалась в декабре 1970 г., когда американцы с восточноафриканского полигона запустили на экваториальную орбиту специализированный рентгеновский спутник «Ухуру» (см. введение). Если до запуска этого спутника число известных космических рентгеновских источников было около 35, то после двух лет работы «Ухуру» число известных рентгеновских источников возросло почти до 200. При этом были зарегистрированы практически все источники, потоки от которых превышают одну тысячную потока от источника Скорпион Х-1 (в интервале энергий рентгеновских квантов от 2 до 20 кэВ). Наблюдаемые источники можно разделить на два класса. Источники первого класса имеют галактическую широту меньше 20°, источники второго класса — больше 20°. Как правило, самые интенсивные источники принадлежат к первому классу. Отсюда можно сделать вывод, что оба класса источников действительно представляют собой совершенно различные по своей природе объекты. В самом деле, если бы все рентгеновские источники представляли собой объекты сходной природы и находились в Галактике, то тогда источники, наблюдаемые в высоких галактических широтах, в среднем были бы к нам гораздо ближе . Но в таком случае они должны были бы быть более яркими . Такую картину мы наблюдаем в оптической астрономии: самые яркие звезды совершенно не концентрируются к Млечному Пути, между тем как слабые («телескопические») звезды очень сильно к нему концентрируются. «Высокоширотные» рентгеновские источники распределены по небу изотропно. Некоторые из них отождествляются с метагалактическими объектами — отдельными галактиками и скоплениями удаленных галактик. Поэтому можно сделать вывод, что по крайней мере часть «высокоширотных» рентгеновских источников суть весьма удаленные от нас метагалактические объекты . Что касается ярких источников, расположенных в низких галактических широтах (т. е. в полосе Млечного Пути), то подавляющее их большинство находится в нашей Галактике. Всего таких источников оказалось около 100. Из этого количества около 10 отождествляются с остатками вспышек сверхновых. Мы уже говорили о них в § 16. Основная же часть наблюдаемых галактических источников рентгеновского излучения должна принадлежать к совершенно особому классу объектов звездной природы, более или менее сходных с источниками Скорпион Х-1. В дальнейшем такие источники мы будем называть «рентгеновскими звездами». Следует различать два типа рентгеновских звезд. Первый тип концентрируется к галактической плоскости, что явно указывает на связь с молодыми массивными звездами. Ниже речь будет идти об объектах такого типа.
Рентгеновские звезды, помимо концентрации к галактическому экватору, обнаруживают явно выраженную концентрацию к галактическому центру: свыше половины их расположено в интервале долгот 60° по обе стороны галактического центра. Отсюда можно сделать вывод, что среднее расстояние до этих источников равно расстоянию от Солнца до галактического центра — около 10 000 пс. Этот вывод следует также из анализа спектров рентгеновских источников, находящихся в области созвездия Стрельца (это созвездие находится в направлении на галактический центр). У таких источников спектр часто обрывается со стороны низких энергий. Такой «обрыв» происходит из-за поглощения рентгеновского излучения межзвездным газом, причем для того, чтобы спектр оборвался у энергии квантов, равной
3 кэВ (как это наблюдается), нужно как раз такое количество межзвездных атомов, какое находится между Солнцем и центром Галактики.
Читать дальше