
что в несколько сотен раз превышает мощность излучения Солнца. Основная часть этой мощности падает на рентгеновский диапазон. Еще в тридцатых годах нашего столетия было установлено, что южная звезда в центре Крабовидной туманности обладает хотя и малым, но вполне измеримым собственным движением. Ее смещение за год по обеим координатам согласно измерениям Дункана составляет
= 0 , 010 секунды дуги,
= 0 , 002 секунды дуги. В дальнейшем собственное движение этой звезды уточнялось наблюдениями ряда астрономов, в частности, пулковских. Зная собственное движение и расстояние до объекта, можно легко найти проекцию его пространственной скорости на плоскость, перпендикулярную к лучу зрения. Учитывая, что расстояние до Крабовиднойтуманности составляет около 2000 пс, можно отсюда найти, что указанная выше проекция скорости составляет величину около 120 км/с. Таким образом, пульсар в Крабовидной туманности, подобно другим пульсарам, обладает большой пространственной скоростью. Об этом у нас речь уже шла выше.
Таковы основные результаты наблюдений пульсара NP 0531 на разных частотах. Некоторые другие результаты наблюдений, а также, что самое интересное, попытки теоретического объяснения природы этого пульсара будут рассматриваться ниже. Теперь же мы остановимся на двух других пульсарах, у которых, по-видимому, также наблюдается высокочастотное излучение. Первый из этих пульсаров связан с остатком сверхновой Паруса X, второй с MSH 15-52. Об этих пульсарах речь шла выше.
В 1977 г. на месте пульсара PSR 0833—45 был обнаружен исключительно слабый оптический объект, пульсирующий с периодом 0,089 секунды, но имеющий два максимума за период, так же как и гамма-излучение от этого пульсара (см. ниже). Любопытно, что от этого пульсара были обнаружены довольно интенсивные импульсы гамма-излучения с энергией квантов больше 30 МэВ. Гамма-профиль PSR 0833—45 имеет два максимума, по фазе не совпадающих с радиоимпульсом. По-видимому, причина гамма-излучения этого пульсара та же, что и сверхжесткого излучения NP 0531. Необходимо еще много наблюдений, чтобы разобраться в сложной проблеме, которую поставил этот очень интересный пульсар.
Тот факт, что жесткое рентгеновское излучение обнаружено только у двух-трех пульсаров, общим свойством которых является молодость, заставляет предположить, что длительность «рентгеноизлучающей» фазы у пульсаров мала по сравнению с длительностью радиоизлучающей фазы. С другой стороны, последняя также ограничена и для большинства пульсаров близка к 3
10 6лет (см. выше). Таким образом, мы чисто эмпирически приходим к представлению, что по мере эволюции нейтронной звезды «активность», проявляющаяся в радио-, оптическом и рентгеновском излучении, должна непрерывно уменьшаться. Напротив, гамма-излучение возможно астрономами уже обнаружено у некоторых сравнительно старых пульсаров, что говорит в пользу особой природы этого излучения (см. § 23).
Вернемся теперь к вопросу о связи пульсаров и радио- и рентгеновских туманностей — остатков вспышек сверхновых. Заслуживает, прежде всего, внимания тот факт, что все три туманности — остатки сверхновых; внутри которых находятся пульсары,— являются плерионами . В то же время из наблюдений следует, что плерионы, по-видимому, являются остатками вспышек сверхновых II типа. Это доказано для двух исторических сверхновых — 1054 г. (давшей начало Крабовидной туманности) и 1181 г. («родительницы» плериона 3C 58). Любопытно подчеркнуть, что туманности — остатки вспышек «исторических» (т. е. зарегистрированных в хрониках) сверхновых I типа плерионами не являются . Напрашивается вывод, что нейтронные звезды, наблюдаемые как пульсары,— это остатки взрывов более массивных и молодых сверхновых II типа, между тем как после взрывов менее массивных, сравнительно старых звезд — сверхновых I типа, звездных остатков не сохраняется,— они полностью рассеиваются в межзвездном пространстве.
То обстоятельство, что нейтронные звезды образуются в результате эволюции массивных звезд, представляется вполне естественным. Ибо только у таких звезд может образоваться кислородно-углеродное ядро с массой, превышающей чандрасекаровский предел. Наличие нейтронных звезд (наблюдаемых как рентгеновские пульсары — см. § 21) в массивных двойных системах как будто бы подтверждает такой вывод.
Читать дальше