Конечно, и другие мыслители интуитивно чувствовали, что время изменчиво. Так, еще в I веке до н. э. Лукреций Кар в своей книге «О природе вещей» писал: «Время существует не само по себе… Нельзя понимать время само по себе, независимо от состояния покоя и движения тел».
Кстати, Лукреций Кар попал прямо в десятку, сказав, что время зависит от движения. Именно это и показал в своей теории относительности Эйнштейн. Он доказал, что никакого абсолютного времени нет. Нет потому, что течение времени зависит от движения (а в природе все движется). Оно зависит и от тяготения. В сильном поле тяготения все процессы (скорость течения времени определяется скоростью течения какого-либо процесса) замедляются. Значит, замедляется и время.
Но от поля тяготения зависит не только время, но и пространство. Оно меняет свои геометрические свойства, искривляется. Геометрия, которую мы изучали в школе, является геометрией неискривленного пространства. В таком пространстве плоскость есть плоскость. Но если это пространство находится вблизи очень массивного космического тела, то эта плоскость может превратиться в сачок.
Считая, что время является одним и тем же, абсолютным, ни от чего не зависимым, Ньютон не мог допустить, чтобы менялось пространство. Он писал: «Абсолютное пространство, по своей собственной природе независимое от всякого отношения к внешним предметам, остается неизменным и неподвижным». Ньютон представлял себе время чем-то вроде бесконечной «сцены», на которой разыгрываются разные события, от которых время (сцена) не зависит. Что же касается искривления пространства и свойств различных геометрических фигур в таком пространстве, то Н. Лобачевский создал для таких условий особую геометрию. В этой геометрии две параллельные прямые могут пересекаться. Это возможно потому, что они находятся не в плоскости, а в искривленном пространстве. Так, они могут находиться на поверхности сферы.
Поскольку пространство и время очень тесно взаимосвязаны, то есть смысл объединить их в одно понятие «пространство — время». Пространство имеет три измерения — длину, ширину и высоту. А тут добавляется еще одно измерение — время. Поэтому говорят о четырехмерном пространстве.
Все сказанное выше хорошо иллюстрируется условиями вблизи черной дыры. Черная дыра, как и любое другое тело, обладающее массой, притягивает к себе другие тела. Поскольку масса черной дыры очень большая, то сила притяжения к центру черной дыры также очень большая. Если определять эту силу по формуле (закону) Ньютона, то в центре черной дыры сила притяжения окажется бесконечно большой. Это надо понимать так. Если мы мысленно приближаем данное тело к центру черной дыры, то расстояние между ними стремится к нулю. Если какое-либо число делить на нуль, то получится бесконечность. Значит, в центре черной дыры (как, собственно, и в центре любой звезды или вообще любого тела) сила притяжения бесконечно велика. Но если пользоваться формулой Эйнштейна, то сила притяжения становится бесконечной еще до того, как тело достигнет центра черной дыры, то есть на определенном расстоянии от этого центра. Это расстояние назвали гравитационным радиусом. Величина этого радиуса зависит от массы небесного тела. Чем меньше масса тела, тем меньше этот радиус. Для Земли гравитационный радиус равен одному сантиметру. Для Солнца он равен трем километрам, тогда как радиус Солнца составляет 700 тысяч километров. В обычных, рядовых случаях (как для Земли или даже Солнца) результаты, полученные по Ньютону и Эйнштейну, отличаются очень мало. Однако в случае очень массивного тела это различие очень большое.
Величину гравитационного радиуса можно определить по формулам теории относительности Эйнштейна. Это сделал К. Шварцшильд, поэтому гравитационный радиус еще называют радиусом Шварцшильда. Соответственно сферу с этим радиусом называют сферой Шварцшильда. Эта сфера имеет глубокий физический смысл. В пределах этой сферы притяжение столь велико, что от него не может ничто оторваться, даже свет. Так что звезда, радиус которой равен или меньше гравитационного радиуса, является невидимой. Другими словами, она является черной (от черного тела не исходит никакого излучения). Такую звезду называют не просто черной, но черной дырой. Дырой потому, что в нее все проваливается. Все, что оказалось на удалении от центра звезды, равном гравитационному радиусу. В черную дыру все проваливается потому, что на гравитационной сфере любое тело приобретает бесконечно большое ускорение свободного падения.
Читать дальше