Есть люди, которые ежедневно заявляют, что мы одиноки в этом космосе. Они просто понятия не имеют о больших числах и о космосе. Позже мы подробнее расскажем, что такое наблюдаемая Вселенная , то есть часть Вселенной, которую мы можем видеть.
А теперь позвольте перейти к значительно более крупным числам, гораздо больше секстиллиона – как насчет 10 81? Насколько мне известно, у этого числа нет названия. Это количество атомов в наблюдаемой части Вселенной. Зачем вообще может понадобиться число еще крупнее? Что «на Земле» можно было бы им сосчитать? Поговорим о 10100, симпатичном круглом числе. Это гугол . Не путать с Google – интернет-компанией, основатели которой специально написали слово googol с ошибками.
В наблюдаемой части Вселенной нет таких объектов, которых бы насчитывался целый гугол. Это просто забавное число. Его можно записать как 10 100либо, если ваш компьютер не ставит верхних индексов, вот так:10^100. Но в некоторых ситуациях большие числа все-таки могут пригодиться: например, если считать не предметы , а варианты событий, которые могут произойти. Сколько можно сыграть шахматных партий? Например, в партии можно объявить ничью в одном из следующих случаев: либо при троекратном повторении позиции одним из игроков, либо после 50 ходов без взятия и движения пешек, либо когда исчерпан материал для дальнейшей борьбы и ни одна из сторон не может поставить мат сопернику. Если предположить, что как только такая ситуация складывается в партии, игрок должен воспользоваться правом свести все на ничью, то можно подсчитать количество возможных шахматных партий. Рич Готт так и сделал, и у него получилось несколько меньше 10^(10^4,4). Это число значительно превосходит гугол, который можно записать как 10^(10^2). Если считать не предметы, а варианты развития событий, то можно получить очень большие числа.
Но есть и число гораздо больше гугола. Если гугол – это единица со ста нулями, то сколько будет 10 в степени гугол? У этого числа также есть название: гуголплекс . Это единица, за которой следует гугол нулей. Можно ли хотя бы записать такое число? Нетушки. Ведь в нем гугол нулей, а во Вселенной менее одного гугола атомов. Придется удовлетвориться записью10 googol, или10 10^100, или 10^(10^100). Если, конечно, есть охота, можете записать 10 19нулей на каждом атоме во Вселенной [2] То есть во Вселенной 10 81 атомов. Чтобы представить гуголплекс, надо на каждом атоме нарисовать 10 19 нулей. – Примеч. науч. ред.
… Но вы наверняка найдете занятие поинтереснее.
Я рассказываю обо всем этом не для того, чтобы убить ваше время. Просто я знаю число еще больше, чем гуголплекс. Яаков Бекенштейн изобрел формулу, позволяющую оценить максимальное количество различных квантовых состояний, которые были бы сравнимы по массе с наблюдаемой частью Вселенной. Учитывая известное явление квантовой размытости, таким же будет и максимально возможное число наблюдаемых вселенных, подобных нашей. Это число 10^(10^124), в нем 10 24гуголплексов нулей. Среди этих 10^(10^124) вселенных попадаются самые разные – есть жуткие, переполненные черными дырами, а есть и почти такие же, как наша, только в такой вселенной в некоторый момент у вашего двойника в носу может оказаться на одну молекулу кислорода меньше, чем здесь у вас, а у какого-то инопланетянина в космосе – на одну молекулу больше.
Так что очень большие числа и в самом деле не лишены практической пользы. Я не представляю, для чего могут понадобиться числа еще больше вышеописанного, но математики, конечно же, представляют. В одной теореме упоминается умопомрачительное число 10^(10^(10^34)), которое называется « число Скьюза ». Математики упиваются размышлениями, страшно далекими от физической реальности.
Давайте побеседуем и о других вселенских крайностях.
Например, о плотности. Вы, конечно, интуитивно понимаете, что такое плотность, но давайте поговорим о космической плотности. Для начала исследуем воздух, которым дышим. C каждым кубическим сантиметром воздуха мы вдыхаем 2,5 х 10 19молекул – 78 % азота и 21 % кислорода.
Пожалуй, плотность 2,5 × 10 19молекул на кубический сантиметр выше, чем вы думали. Но давайте обсудим максимально чистый вакуум, который можно получить в лаборатории. Сегодня вполне удается снизить плотность до 100 молекул на кубический сантиметр. А межпланетное пространство? В солнечном ветре в районе земной орбиты содержится примерно 10 протонов на кубический сантиметр. Рассуждая здесь о плотности, я говорю о количестве молекул, атомов или свободных частиц, из которых состоит газ. Что насчет межзвездного пространства? Его плотность колеблется в зависимости от того, где вы очутились, но нередко встречаются области, где на кубический сантиметр приходится примерно один атом. Межгалактическое пространство гораздо разреженнее: там всего один атом на кубический метр.
Читать дальше
Конец ознакомительного отрывка
Купить книгу