• Пожаловаться

О. Деревенский: Фокусы-покусы квантовой теории

Здесь есть возможность читать онлайн «О. Деревенский: Фокусы-покусы квантовой теории» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Физика / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

libcat.ru: книга без обложки

Фокусы-покусы квантовой теории: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фокусы-покусы квантовой теории»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков!  Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории. Эти и целый ряд других примечательных технических устройств были созданы исключительно на основе экспериментальных и технологических прорывов. А то, что называется квантовой теорией – это просто пачка изысканных математических процедур, с помощью которых задним числом описывали эмпирические факты из жизни микромира.

О. Деревенский: другие книги автора


Кто написал Фокусы-покусы квантовой теории? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

Фокусы-покусы квантовой теории — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фокусы-покусы квантовой теории», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

А как там насчёт знаменитых опытов Лебедева? Ведь нас учат, что виртуозность экспериментаторского искусства здесь была такова, что световому давлению ничего не осталось, кроме как обнаружиться. Смотрим… Свет от электрической дуги направлялся на мишеньки из тонкой фольги, прикреплённые к крылышкам лёгких крутильных маятников. Мишенька освещалась то с одной, то с другой стороны – не для раскачки маятника, а для смещения нулевого положения его колебаний. По величине этого смещения и делался вывод о силовом эффекте от светового давления. Но ведь ещё здесь вмешивались радиометрические силы: из-за того, что температура остаточных газов несколько выше с освещённой стороны мишеньки, чем с неосвещённой, возникает соответствующая разница давлений. Чтобы уменьшить этот эффект, баллон с маятником откачивали – но полностью радиометрические силы, конечно, не устранялись. Как же можно было убедиться в том, что давил именно свет? А вот как. Согласно теории Максвелла, давление света на абсолютно отражающую поверхность в два раза больше, чем на абсолютно поглощающую. Вот Лебедев и виртуозничал с двумя типами мишенек: с зеркальными и чернёными. Но вышел конфуз какой-то: силовой эффект для зеркальных мишенек оказался всего в 1.2-1.3 раза больше, чем для чернёных. К гадалке не ходи – это радиометрические силы резвились… Что интересно: спустя десятилетия, опыты Лебедева можно было повторить в условиях несравненно лучшего вакуума, устранив радиометрические силы подчистую. Удача сама лезла в руки – да что-то не нашлось охотников сгрести её в охапку. Оскудела, что ли, земля виртуозами экспериментаторского искусства? Ну, что вы! Дело, похоже, вот в чём: когда эти виртуозы устраняли радиометрические силы, то пропадал и силовой эффект. А чтобы публика об этом не догадалась, придумали игрушку с очаровательным названием: «радиометрическая вертушка». Светишь на её крыльчатку, а она и вертится. «Пусть вас не смущает название игрушки, - разъяснили балбесам, - она вертится из-за давления света!»

Впрочем, для квантовой теории подобные закидоны про давление света были – что называется, сбоку припёка. А хотелось ей гораздо большего: свидетельств о том, что импульс переносится отдельным квантом . Добыть такое свидетельство – это вам не то, что подшипники у вертушки смазывать, и не то, что подглядывать, как кометы хвостами машут. Квант нельзя было ни увидеть, ни потрогать. Поэтому нужные свидетельства были получены силой великих мыслей. А точнее – силой великих домыслов.

Взять хотя бы историю Комптона – у него получилось, в некотором роде, эффектно. Была такая странность при рассеянии рентгеновских лучей на мишенях из лёгких элементов: длина волны сдвигалась, причём этот сдвиг зависел лишь от угла рассеяния. Но это было странно с позиций классической, т.е. волновой, теории. А Комптон попробовал применить квантовый подход, в котором рентгеновскому кванту приписан импульс. Предполагалось, что квант, со своим приписанным импульсом, соударяется со «слабо связанным» атомарным электроном и выбивает его из атома, превращая его в «электрон отдачи». Тогда из законов сохранения энергии-импульса следовало уменьшение энергии рассеянного кванта – в соответствии с наблюдавшимся увеличением длины волны! Ну, Комптон и обтяпал это дело так, что ахнули почти все – кроме, разве что, специалистов по рассеянию рентгеновских лучей. Они-то знали, что этот ловкач соловьём заливался лишь про компоненту с увеличенной длиной волны, но помалкивал про компоненту с настолько же уменьшенной длиной волны. Ибо, если говорить всю правду, то пришлось бы делать грустные выводы. Либо законы сохранения энергии-импульса в половине случаев работают, а в половине – нет. Либо, что более разумно, приписанный кванту импульс – это полная туфта… «Ты, Комптон, главная штука, не тушуйся, - утешали друзья-экспериментаторы. – Мы твой эффект поддержим!» И кинулись поддерживать: доказывать на опыте, что рассеянный квант и «электрон отдачи» ведут себя правильно, т.е. вылетают одновременно и разлетаются именно под теми углами, какие требуют законы сохранения. Об этих поддерживающих опытах в учебниках пишут очень скупо, без подробностей. Это понятно. Если студенты узнали бы подробности, они оценили бы «доказательную силу» этих опытов: хохот грянул бы гомерический.

Таким вышел первый блин на кухне, где стряпали доказательства переноса импульса отдельным квантом. Но вот, из этой кухни опять запахло чем-то свеженьким. На этот раз дело касалось гамма-квантов, которые капризничали, не желая резонансно поглощаться, хотя у ядер-поглотителей имелся такой же квантовый переход, как и у ядер-излучателей. «Это всё из-за того, - втолковывали теоретики, - что гамма-квант сообщает импульс отдачи как излучающему его ядру, так и поглощающему – отчего их изначально совпадавшие спектральные линии разъезжаются, из-за эффекта Допплера, на величину, превышающую их ширины». Ну, ну. Вообще-то, спектральная линия излучателя испытывает допплеровский сдвиг тогда, когда соответствующая скорость у излучателя уже имеется . В рассматриваемом же случае, ядро-излучатель приобретает отдачу в результате излучения кванта. Значит, на момент излучения, никакого сдвига линии ещё нет. Мы говорим «на момент», поскольку Первый Сольвеевский конгресс чётко постановил: квант излучается мгновенно. (Правда, тогда ядро, приобретая импульс отдачи, должно двигаться с бесконечным ускорением. Ну, мало ли… открытий чудных. Умом которых не понять!) Само собой, поглощается квант тоже мгновенно. Значит, и здесь – тот же номер: сначала должно произойти поглощение, и лишь потом появился бы результирующий сдвиг линии. Когда процесс, на который этот сдвиг, якобы, влияет, уже закончился! Не работает толкование про разъезжание спектральных линий из-за эффекта отдачи! А ведь как красиво выходило: когда Мёссбауэр обнаружил, что резонансное поглощение получается, если ядра-излучатели и ядра-поглотители встроены в кристаллические структуры, находящиеся при достаточно низкой температуре – был сделан логичный вывод о том, что здесь отдача воспринимается не единичным ядром, а всем кристаллом, становясь при этом, практически, нулевой. Тут же разродились славненькой теорией, согласно которой мёссбауэровский режим наступает, когда температура кристалла становится ниже т.н. дебаевской температуры. Ну, и опять промашечка вышла. Вон, у железа наблюдается мёссбауэровское поглощение для перехода 14.4 кэВ при температурах вплоть до 1046 оК, хотя дебаевская температура у железа равна 467 оК. Чихало железо – и не только оно! – на вашу славненькую теорию. Ибо для каждой длины волны гамма-излучения – своя температура перехода в мёссбауэровский режим! А, знаете, почему? Да вроде как потому, что в обычных условиях резонансному поглощению мешает вовсе не эффект отдачи, а допплеровские сдвиги из-за тепловых колебаний ядер. При понижении температуры, размах этих колебаний уменьшается, и, наконец, он становится меньше, чем рабочая длина волны гамма-излучения. А известно, что если размер области, в которой движется излучатель или поглотитель, меньше длины волны излучения, то линейного эффекта Допплера нету. Ну, вот и наступает мёссбауэровский режим. Причём, в этом режиме, когда допплеровские сдвиги из-за тепловых колебаний ядер пропадают, кристалл превращается в великолепный интерференционный фильтр: сверхузкие мёссбауэровские линии говорят не о свойствах квантовых переходов в ядрах, а о свойствах структуры кристалла! Не верите? Так это легко проверить: если здесь дело в свойствах структуры кристалла, то для монокристалла должна наблюдаться… анизотропия эффекта Мёссбауэра! Проверено: так и есть. Тихий ужас какой-то! Если кто-то до сих пор верит в «эффект отдачи» из-за гамма-кванта, пусть-ка объяснит эту самую анизотропию. Причём, пусть исходит из того, что в мёссбауэровском режиме у кристалла подразумевается абсолютная жёсткость, при которой «отдача» воспринимается «всем кристаллом» одинаково во всех направлениях! Ну, кто? Куда же вы попрятались, сладкоголосые?

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фокусы-покусы квантовой теории»

Представляем Вашему вниманию похожие книги на «Фокусы-покусы квантовой теории» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «Фокусы-покусы квантовой теории»

Обсуждение, отзывы о книге «Фокусы-покусы квантовой теории» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.