Но – куда там! Теоретическая мысль работала совсем в другом направлении. Знаете, теоретики страшно любят вырабатывать универсальные принципы. Ну, вот, здесь эта тяга к универсальности и сказалась. Задачка ставилась так: если с корпускулярно-волновым дуализмом у квантов получилась «труба», то нельзя ли, из соображений универсальности, загнать в эту «трубу» всю физику? Как было бы восхитительно, если точно такой же «дуализм» оказался бы присущ и частицам вещества тоже! Эту идею проталкивал Луи де Бройль. «Каждой частице, - твердил он, - можно сопоставить волну. Чтобы найти длину этой волны, надо постоянную Планка разделить на импульс частицы, т.е. на произведение её массы на скорость. Всё получается изумительно!» Да уж… особенно изумительно получалось то, что в разных системах отсчёта скорость частицы разная – значит, разная должна быть и её длина волны. А, не дай Бог, частица покоится в лабораторной системе отсчёта – при этом её длина волны равна чему? Делим постоянную Планка на нуль и получаем бесконечность. Господа теоретики, что означает сия сингулярность? До сих пор не въехали? Или вы разбираетесь с подобными сингулярностями методом «начхать и забыть»? Тогда, секундочку, сейчас вы страшно заинтересуетесь. Вот частица пролетает сквозь дифракционную решётку – по-вашему, должна быть дифракция, да? А согласно принципу относительности, ничего не изменится, если дифракционная решётка налетает на неподвижную частицу. Но в этом случае дебройлевская длина волны бесконечна, и никакой дифракции не будет! Вы уж определитесь, что для вас важнее: волны де Бройля или догматы теории относительности. А то ведь издёргали месье почём зря: не по принципиальным вопросам, а по каким-то пустякам вроде «А Ваши волны – это волны чего в чём?» Как будто он это знал. «Главное не то, чего они в чём, - втолковывал он, - а то, что они – волны! Каждая частица – это не то, что мы думали раньше. Это – волновой пакет!» Поясним: при таком подходе частица представляет собой «пик на ровном месте», получающийся в результате удачного совмещения горбов множества волн, длины которых попадают в небольшой интервальчик. Причём, скорость перемещения такого «волнового пакета» как раз и равняется скорости частицы! Полный триумф? Как бы не так. Дотошные коллеги подметили, что интервальчик для длин волн означает соответствующий интервальчик для скоростей этих волн. А раз так, то волновой пакет обязан расплываться: «пик» превратится сначала в бугор, потом в возвышенность, и в конце совсем сровняется с «ровным местом». Прикинули: размер волнового пакета, соответствующего электрону, удваивался бы за время около 10 -26секунды! Чтобы оценить эту цифру, надо учесть, что в атоме водорода электрон на первой боровской орбите совершает один оборот примерно за 10 -16секунды. Т.е., по волновым раскладочкам выходило, что электрон расплылся бы, не успев пройти даже миллиардной части орбиты! Народ просто отпал… «Месье, - пытались утешать де Бройля, - а давайте трактовать Ваши волны в статистическом смысле! Там, где пики волн, там вероятность пребывания частицы больше!» - «Как же, «в статистическом смысле», - переживал де Бройль. – Особенно эта статистика хороша для покоящейся частицы… Ну, ничего, вы у меня попомните свою мелочную дотошность. Надо лишь обнаружить волновые свойства у частиц на опыте!»
Это ответственное задание, если верить историкам, было выполнено вполне успешно: качественно и в срок. Первыми частицами, у которых усмотрели волновые свойства, стали электроны. В «Фейнмановских лекциях» описан потрясающий опыт с прохождением электронов сквозь две щели. Мол, если не мешать им пролетать им сквозь две щели, то на сцинтилляционном экране за щелями получаются интерференционные полосы. Перекроешь одну щель – полосы пропадают. Попытаешься проследить, через какую щель пролетает электрон – полосы тоже пропадают… Очень это всё впечатляет читателей; одна беда – никто никогда таких опытов не делал. У электрона дебройлевская длина волны, понимаете, маленькая. Щелью для неё является зазор между атомами. Ну, прикиньте: как, для электронов, можно сделать экран всего с двумя щелями? Как можно перекрывать одну из них? Нанотехнологи, одно слово!
Дэвиссон и Джермер делали совсем другое – вполне возможное. Они направляли низковольтный пучок электронов ортогонально на полированный срез монокристалла никеля (с никелем у них особенно здорово получилось), и исследовали угловое распределение электронов, рассеиваемых кристаллом в обратную полусферу – за вычетом центрального створа, затенённого электронной пушкой. Обнаружились пики рассеяния, соответствовавшие брэгговской дифракции, т.е. резонансному отражению волн от параллельных атомных плоскостей, наклонённых к поверхности среза – причём, эти пики получались при подходящих энергиях пучка, т.е., теоретически, при подходящих резонансных длинах волн. Казалось бы – вот они, волновые свойства электронов, во всей своей красе! Но, прежде чем прыгать от восторга, давайте-ка посмотрим: а, может, и здесь о чём-то умолчали? Не в первый раз же! Смотрим… и видим… ну, полная жуть. Во-первых, авторы сказали не про все пики рассеяния, которые наблюдались. Самым сильным был широкий пик зеркального рассеяния, который наблюдался всегда – при любых энергиях пучка – и, значит, он не мог быть порождением брэгговской дифракции. Да и под другими углами были «лишние» пики рассеяния, которые никак не вписывались в концепцию этой дифракции. Далее: при уменьшении скорости падающих электронов, казалось бы, должна уменьшаться глубина их проникновения в кристалл, и, значит, должен уменьшаться эффективный рассеивающий объём кристалла, т.е. должна уменьшаться резкость дифракционных пучков. В действительности, всё происходит… наоборот! Ну, знаете, это уже совсем не похоже на брэгговскую дифракцию! Терпение, осталось чуть-чуть: если нанести на рассеивающую поверхность плёнку другого металла толщиной всего в два атомных слоя, то прежняя картина рассеяния практически исчезает, заменяясь картиной для этого другого металла. Какие же могут быть наклонные атомные плоскости при толщине в два атомных слоя? Совершенно ясно, что Дэвиссон и Джермер имели дело с поверхностным эффектом – и, конечно, не с брэгговской дифракцией, которая является эффектом объёмным . Что же это за поверхностный эффект? Да вроде как вторичная электронная эмиссия. При таком допущении здесь всё встаёт на свои места. Правда, никакими волновыми свойствами электронов тут и не пахнет…
Читать дальше