Айзек Азимов - Нейтрино - призрачная частица атома

Здесь есть возможность читать онлайн «Айзек Азимов - Нейтрино - призрачная частица атома» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Атомиздат, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Нейтрино - призрачная частица атома: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Нейтрино - призрачная частица атома»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.

Нейтрино - призрачная частица атома — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Нейтрино - призрачная частица атома», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По закону сохранения электрического заряда, казалось бы, ни один электрон не возникает без одновременного рождения позитрона. Согласно тому же закону и закону сохранения барионного числа, ни один протон не возникает без одновременного рождения антипротона. В окружающей нас Вселенной электронов и протонов сколько угодно, а позитроны и антипротоны исключительно редки. Почему?

Убедительного ответа на этот вопрос еще нет. Одна гипотеза предполагает, что, когда возникла наша Вселенная, частиц и античастиц было равное количество, но они были как-то разделены. Возможно, кроме нашего мира существует также антимир. Все вещества нашего мира состоят из атомов с ядрами из протонов и нейтронов и с электронами во внешних областях атома. В антимире антиматерия должна состоять из атомов с ядрами из антипротонов и антинейтронов и с позитронами вместо электронов во внешних областях атома. В антимире обычное вещество встречалось бы исключительно редко. (До недавнего времени антивещество оставалось просто теоретической концепцией. Однако в 1965 году физики Брукхейвенской национальной лаборатории получили очень недолговечные ядра из антипротона и антинейтрона. Известно, что ядро водорода-2 состоит из протона и нейтрона. Водород-2 часто называют дейтерием, поэтому систему протон + нейтрон назвали дейтроном, а систему антипротон + антинейтрон — антидейтроном. Антидейтрон — простейший вид антиматерии, который представляет собой более сложное образование по сравнению с элементарной частицей. Без сомнения, придет время, когда более сложные формы антивещества будут созданы в лаборатории.

Не исключена возможность, что в нашей Вселенной присутствуют одновременно и вещество и антивещество, но находятся они в разных галактиках. Трудно определить, видим ли мы в телескопы галактики или антигалактики. На первый взгляд кажется, что галактику от антигалактики можно отличить по излучаемому свету. Если обычное вещество излучает фотоны, антивещество должно излучать «антифотоны». Нельзя ли их различить? К несчастью, нет! Если существуют антифотоны, аннигиляция частиц и античастиц привела бы к образованию одинакового числа фотонов и антифотонов. Однако образуются только фотоны, поэтому физики сделали вывод, что фотон является собственной античастицей, т. е. излучение вещества и антивещества должно быть совершенно одинаково, и по нему нельзя различить две галактики. (Однако позднее мы убедимся, что не все еще потеряно.) Если бы и материя и антиматерия сосуществовали в нашей Вселенной, они могли бы случайно встретиться в значительных количествах. Если бы это произошло, при аннигиляции выделилось бы колоссальное количество энергии, гораздо больше, чем при ядерных реакциях внутри таких звезд, как наше Солнце.

В действительности существуют галактики и другие космические объекты, которые излучают необычно большие потоки энергии в виде света или радиоволн, или того и другого вместе. Сейчас астрономы заняты попытками определить источник этой энергии. Аннигиляция вещества и антивещества — возможный, но не единственный ее источник.

Глава 7. Появление нейтрино

Энергия α-частицы

Законы сохранения строго выполнялись во всех случаях, описанных в предыдущих главах. Когда один из законов оказывался несовершенным, приходилось интерпретировать его по-другому. Так, старый закон сохранения массы был расширен и превращен в более общий закон сохранения энергии. С другой стороны, когда ожидаемые события в действительности не происходили, придумали новый закон сохранения (как было в случае закона сохранения барионного числа). Однако не всегда легко доказать, что законы сохранения выполняются точно. Особенно загадочная ситуация возникла на заре развития ядерной физики при изучении кинетической энергии частиц, испускаемых радиоактивными веществами.

Энергию α-частицы можно определить, измеряя массы исходного радиоактивного ядра, α-частицы и конечного ядра. Суммарная масса α-частицы и конечного ядра должна быть немного меньше массы исходного ядра, а энергетический эквивалент недостающей массы равняться кинетической энергии α-частицы. Измерять с высокой точностью массы различных ядер и других частиц физики смогли только в 20-х годах нашего столетия. Тем не менее, некоторые важные выводы относительно энергий частиц они сделали, не зная точного значения масс.

Рассмотрим торий-232, который распадается на α-частицу (гелий-4) и радий-228. Все ядра тория-232 имеют одинаковые массы. Массы всех ядер радия-228 также имеют одинаковую величину, как и массы всех α-частиц. Не зная величину этих масс, все же можно сказать, что каждый раз, когда атом тория-232 испускает α-частицу, дефицит массы должен быть одинаков, а следовательно, должна быть одинакова и кинетическая энергия α-частиц. Другими словами, торий-232 должен испускать α-частицы с одной и той же энергией.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Нейтрино - призрачная частица атома»

Представляем Вашему вниманию похожие книги на «Нейтрино - призрачная частица атома» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Нейтрино - призрачная частица атома»

Обсуждение, отзывы о книге «Нейтрино - призрачная частица атома» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x