Жизненный цикл плодовой мушки составляет 16 дней, а новое поколение она дает каждые 12 часов. Эти существа плодовиты, непритязательны и, по словам генетика из Беркли Герри Рубин, имеют столь много общего с человеком, что их называют крохотными людьми с крыльями. Црозофила располагает 13 600 генами на ДНК из 165 млн. нуклеотидных пар азотистых оснований. Весь этот молекулярный аппарат умещается в тельце длиной 3 мм, величиной примерно с букву V в имени Venter (о самом Вентере чуть позже).
Mus mesculus (мышь), давний любимец медиков, занимающихся изучением болезней и лекарств, тоже соответствует всем требованиям, предъявляемым к модельным организмам. К тому же геном мыши весьма схож с геномом человека.
Генетические сравнительные исследования уже многое прояснили в отношении строения и функционирования человеческого тела. Дальнейшие исследования принесут дополнительные сведения.
Другие создания, вроде полосатой перцины, иглобрюха [родственного горчице сорняка из семейства крестоцветных], резушки Таля (Arabidopsis thaliana) и палочки Пфайфера (Haemophilus influenzae), выступают в роли модельных организмов и изучены в разной степени. Модельные организмы и приспособления, требуемые для их изучения, вызывают в памяти ситуации из классической описательной биологии с образами бесчисленных исследователей, склонившихся над микроскопом или щурящихся сквозь стекла очков во время поездок по экзотическим местам, где можно увидеть организмы в их естественной среде обитания (вспомним Чарльза Дарвина на Галапагосских островах).
Физика — биология — химия
Несмотря на значимость модельных организмов для биологов, поле деятельности современной биологии значительно расширилось во многом благодаря нахлынувшим туда представителям других отраслей знаний, чья деятельность преобразила сам подход к изучению биологии.
Чтобы понять, как произошло это преображение, взглянем иначе и шире на центральное учение молекулярной биологии. Описательная биология сосредоточивалась на видимых признаках, но находила мало объяснений, связанных с этими признаками молекулярных механизмов. Затем пришел черед химии, занимавшейся химическими реакциями внутри живых существ, прояснявшими биологические процессы. Но главная трудность состояла в том, что управляющие живыми системами молекулы были слишком малы, чтобы их можно было для разглядывать в микроскоп.
Следующими нахлынули физики, посредством рентгеновской кристаллографии выявившие двойную спираль ДНК (вспомним биолога Джеймса Уотсона и физика Фрэнсиса Крика, воспользовавшихся данными рентгеновского кристаллографа Розалинды Франклин). Итак, хорошие вести заключались в создании представления об общем строении ДНК, а плохие — в невозможности разглядеть подробности ее строения из-за малых размеров. ДНК содержит такое огромное количество парных оснований нуклеотидов, что их определение и выписывание оказалось сложной задачей.
Итак, положение биологии в 198 0-е годы было следующим: молекулярная биология сосредоточилась на работе с крайне малыми объектами; классическая описательная биология ограничилась наблюдением той части биосферы, которая была доступна зрению, пусть и сквозь окуляр микроскопа. Многие детали на стыке микро — и макроскопических областей биологии оказались совершенно необъяснимыми (рис. 4.6).
Рис. 4.6. Общая картина биологии
Переход от большого масштаба к малому происходил медленно. Изучение молекул с химической точки зрения кое-что проясняло, но продвижение шло черепашьим шагом, а черепаха, увы, не модельный организм.
В середине 1980-х годов некоторых биологов осенило: почему бы не изучить весь состав ДНК живого организма, так называемый геном? Более того, посредством отдельных модельных организмов прийти к конечной цели — геному человека. Это привело к очередному наплыву в биологию приборостроителей, программистов, предпринимателей и появлению одного неуемного исследователя — Дж. Крейга Вентера.
Составление карты генома человека. Великие задачи требуют величественныхорудий
Прежде чем описывать все перипетии, увенчавшиеся в итоге составлением карты генома модельных организмов и человека, вникнем в подробности того, как устанавливается последовательность оснований плотно упакованной молекулы ДНК. Оказывается, геном человека состоит из 3 млрд. парных оснований нуклеотидов. Если считать их по одному в секунду, на это уйдет почти 100 лет. Очевидно, для их определения потребовался более быстрый способ, для чего понадобилось усовершенствовать несколько методов.
Читать дальше