Производится закалка весьма просто - металлический предмет раскаляют докрасна, а затем бросают в воду или в масло. Охлаждение происходит так быстро, что превращение структуры, устойчивой при высокой температуре, не успевает произойти. Таким образом высокотемпературная структура будет неограниченно долго существовать в несвойственных ей условиях: перекристаллизация в устойчивую структуру идет настолько медленно, что практически незаметна.
Говоря о закалке железа, мы были не вполне точны. Закаляют сталь, т. е. железо, содержащее доли процента углерода. Наличие совсем малых примесей углерода задерживает превращение твердого железа в мягкое и позволяет производить закалку. Что же касается совсем чистого железа, то его закалить не удается - превращение структуры успевает произойти даже при самом резком охлаждении.
В зависимости от вида диаграммы состояния, меняя давление или температуру, достигают тех или иных превращений.
Многие превращения кристалла в кристалл наблюдаются при изменении одного лишь давления. Таким способом был получен черный фосфор.

Рис. 4.13
Превратить графит в алмаз удалось, лишь используя одновременно и высокую температуру, и большое давление. На рис. 4.13 показана диаграмма состояния углерода. При давлениях ниже десяти тысяч атмосфер и при температурах меньше 4000 К устойчивой модификацией является графит. Таким образом, алмаз живет в "чужих" условиях, поэтому его без особого труда можно превратить в графит. Но практический интерес представляет обратная задача. Осуществить превращение графита в алмаз не удается одним лишь повышением давления. Фазовое превращение в твердом состоянии идет, видимо, чересчур медленно. Вид диаграммы состояния подсказывает правильное решение: увеличить давление и одновременно нагреть. Тогда мы получим (правый угол диаграммы) расплавленный углерод. Охлаждая его при высоком давлении, мы должны попасть в область алмаза.
Практическая возможность подобного процесса была доказана в 1955 г., а в настоящее время проблема считается технически решенной.
Если понижать температуру тела, то рано или поздно оно затвердеет и приобретет кристаллическую структуру. При этом безразлично, при каком давлении происходит охлаждение. Это обстоятельство кажется совершенно естественным и понятным с точки зрения законов физики, с которыми мы уже познакомились. Действительно, понижая температуру, мы уменьшаем интенсивность теплового движения. Когда движение молекул станет настолько слабым, что уже перестанет мешать силам взаимодействия между ними, молекулы выстроятся в аккуратном порядке - образуют кристалл. Дальнейшее охлаждение заберет от молекул всю энергию их движения, и при абсолютном нуле вещество должно существовать в виде покоящихся молекул, расположенных в правильную решетку.
Опыт показывает, что таким образом ведут себя все вещества. Все, кроме одного-единственного: таким "уродом" является гелий.
Некоторые сведения о гелии мы уже сообщили читателю. Гелий является рекордсменом по значению своей критической температуры. Ни одно вещество не имеет критической температуры более низкой, чем 4,3 К. Однако сам по себе этот рекорд не означает чего-либо удивительного. Поразительно другое: охлаждая гелий ниже критической температуры, добравшись практически до абсолютного нуля, мы не получим твердого гелия. Гелий остается жидким и при абсолютном нуле.
Поведение гелия совершенно не объяснимо с точки зрения изложенных нами законов движения и является одним из признаков ограниченной годности таких законов природы, которые казались универсальными.
Если тело жидкое, то его атомы находятся в движении. Но ведь, охладив тело до абсолютного нуля, мы отняли у него всю энергию движения. Приходится признать, что у гелия имеется такая энергия движения, которая не может быть отнята. Это заключение несовместимо с механикой, которой мы занимались до сих пор. Согласно этой изученной нами механике, движение тела всегда можно затормозить до полной остановки, отняв у него всю кинетическую энергию; так же точно можно прекратить движение молекул, отобрав у них энергию при столкновении со стенками охлаждаемого сосуда. Для гелия такая механика явно не подходит.
"Странное" поведение гелия является указанием на факт огромной важности. Мы впервые встретились с невозможностью применения в мире атомов основных законов механики, установленных непосредственным изучением движения видимых тел,- законов, казавшихся незыблемым фундаментом физики.
Читать дальше