Но устройства на магнитной подвеске чрезвычайно дороги. Один из путей к увеличению их эффективности — использование сверхпроводников, которые при охлаждении до температур, близких к абсолютному нулю, полностью теряют электрическое сопротивление. Явление сверхпроводимости открыл в 1911 г. Хейке Камерлинг-Оннес. Суть его состояла в том, что некоторые вещества при охлаждении до температуры ниже 20 К (20° выше абсолютного нуля) теряют всякое электрическое сопротивление. Как правило, при охлаждении металла его электрическое сопротивление постепенно уменьшается. {Дело в том, что направленному движению электронов в проводнике мешают случайные колебания атомов. При уменьшении температуры размах случайных колебаний уменьшается, и электричество испытывает меньшее сопротивление.) Но Камерлинг-Оннес, к собственному изумлению, обнаружил, что сопротивление некоторых материалов при определенной критической температуре резко падает до нуля.
Физики сразу поняли важность полученного результата. При передаче на большие расстояния в линиях электропередачи теряется значительное количество электроэнергии. Но если бы сопротивление удалось устранить, электроэнергию можно было бы передавать в любое место почти даром. Вообще, возбужденный в замкнутом контуре электрический ток мог бы циркулировать в нем без потерь энергии миллионы лет. Более того, из этих необычайных токов несложно было бы создать магниты невероятной мощности. А имея такие магниты, можно было бы без усилий поднимать громадные грузы.
Несмотря на чудесные возможности сверхпроводников, применять их очень непросто. Держать большие магниты в баках с чрезвычайно холодными жидкостями очень дорого. Чтобы сохранять жидкости холодными, потребуются громадные фабрики холода, которые поднимут стоимость сверхпроводящих магнитов до заоблачных высот и сделают их использование невыгодным.
Но однажды физикам, возможно, удастся создать вещество, которое сохранит сверхпроводящие свойства даже при нагреве до комнатной температуры. Сверхпроводимость при комнатной температуре — «святой Грааль» физиков-твердотельщиков. Получение таких веществ, по всей вероятности, послужит началом второй промышленной революции. Мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько дешевыми, что даже «планирующие автомобили», возможно, окажутся экономически выгодными. Очень может быть, что с изобретением сверх-проводников, сохраняющих свои свойства при комнатной температуре, фантастические летающие машины, которые мы видим в фильмах «Назад в будущее», «Особое мнение» и «Звездные войны», станут реальностью.
В принципе вполне пред ставимо, что человек сможет надевать специальный пояс из сверхпроводящих магнитов, который позволит ему свободно левитировать над землей. С таким поясом можно было бы летать по воздуху, подобно Супермену. Вообще, сверхпроводимость при комнатной температуре явление настолько замечательное, что изобретение и использование таких сверхпроводников описано во множестве научно-фантастических романов (таких, как серия романов про Мир-Кольцо, созданная Ларри Нивеном в 1970 г.).
Десятки лет физики безуспешно искали вещества, которые обладали бы сверхпроводимостью при комнатной температуре. Это был утомительный скучный процесс — искали методом проб и ошибок, испытывая один материал за другим. Но в 1986 г. был открыт новый класс веществ, получивших название «высокотемпературные сверхпроводники»; эти вещества обретали сверхпроводимость при температурах порядка 90° выше абсолютного нуля, или 90 К. Это открытие стало настоящей сенсацией в мире физики. Казалось, распахнулись ворота шлюза. Месяц за месяцем физики соревновались друг с другом, стремясь установить новый мировой рекорд сверхпроводимости. Какое-то время даже казалось, что сверхпроводимость при комнатной температуре вот-вот сойдет со страниц научно-фантастических романов и станет реальностью. Но после нескольких лет бурного развития исследования в области высокотемпературных сверхпроводников начали замедляться.
В настоящее время мировой рекорд для высокотемпературных сверхпроводников принадлежит веществу, представляющему собой сложный оксид меди, кальция, бария, таллия и ртути, которое становится сверхпроводящим при 138 К (-135 °С). Эта относительно высокая температура все еще очень далека от комнатной. Но и это—важный рубеж. Азот становится жидким при температуре 77 К, а жидкий азот стоит примерно столько же, сколько обычное молоко. Поэтому для охлаждения высокотемпературных сверхпроводников можно использовать обычный жидкий азот, это недорого. (Разумеется, сверхпроводники, остающиеся таковыми и при комнатной температуре, совсем не потребуют охлаждения.)
Читать дальше
Конец ознакомительного отрывка
Купить книгу