Теперь становится очевидным случай соотношения неравенства, описанного Беллом. Начнем с параллельным расположением детекторов; теперь наблюдаемые последовательности идентичны. Изменим установку детектора Мо на угол А (рис. 31, б), и последовательности перестают быть одинаковыми; теперь они содержат ошибки — в среднем одну ошибку на каждые четыре наблюдения. Аналогичным образом, вернемся к параллельной установке детекторов, и на этот раз изменим установку детектора Джо на тот же угол А (рис. 31, в); снова будет в среднем одна ошибка на каждые четыре наблюдения. Этот результат не зависит от того, как далеко друг от друга находятся детекторы и их наблюдатели. Один может быть в Нью-Йорке, другой в Лос-Анджелесе, а источник фотонов — где-то посередине.

Рис. 31. Как возникает неравенство Белла. Если бы скрытые переменные были локальными, то частота появления ошибок (отклонение от полной корреляции) в экспериментальной обстановке (г) была бы равна, самое большее, сумме частот появления ошибок в двух обстановках (б) и (в)
Если локальность справедлива, если постулируемые скрытые переменные, которые заставляют фотоны принимать определенные направления поляризации, требуемые ситуацией, локальны, то мы можем с полной уверенностью говорить: что бы вы ни делали с детектором Джо, это не может изменять сообщение Мо — во всяком случае, не мгновенно. И наоборот. Таким образом, если, начав с параллельных установок, наблюдатель Джо поворачивает детектор Джо на угол А и если наблюдатель Мо одновременно поворачивает детектор Мо на тот же угол в противоположную сторону (так что детекторы теперь расположены под углом 2А друг к другу, рис. 32, г), то какова должна быть частота появления ошибок? Если справедливо предположение локальности скрытых переменных, то действие каждого наблюдателя приводит, в среднем, к одной ошибке на четыре наблюдения, так что суммарная частота появления ошибок составит 2 на четыре наблюдения. Однако может случиться, что ошибка Джо время от времени погашает ошибку Мо. Таким образом, частота появления ошибок будет меньшей или равной 2/4 — это и есть неравенство Белла. Однако квантовая механика предсказывает частоту появления ошибок 3/4. (Доказательство этого выходит за рамки данной книги.) Итак, теорема Белла гласит: теория локальных скрытых переменных несовместима с квантовой механикой.
Неравенства Белла подвергались экспериментальному исследованию. В 1972 г. физики из Университета Беркли Джон Клаузер и Стюарт Фридман показали, что неравенства Белла действительно нарушаются, и квантовая механика реабилитирована. Затем Аспект своим экспериментом доказал, что между двумя детекторами вообще не может быть никаких локальных сигналов.
Заметьте, что работа Белла (а также работа Бома, поскольку она привела к идее измерения поляризационной корреляции) подготовила почву для эксперимента Аспекта, утвердившего нелокальность в квантовой механике. Теперь вы можете оценить, почему на конференции по физике в 1985 г. группа физиков пела на мотив «Колокольчики звенят» («Jingle Bells») такие слова:
Singlet Bohm, singlet Bell
Singlet all the way.
Oh, what fun it is to count
Correlations every day.
(Синглет Бом, синглет Белл, всю дорогу синглет.
Ах, как весело каждый день считать корреляции.)
Согласно теореме Белла и эксперименту Аспекта, если скрытые переменные существуют, они должны быть способны мгновенно воздействовать на скоррелированные квантовые объекты, даже если они находятся в разных концах галактики. Когда в эксперименте Аспекта один экспериментатор изменяет настройку своего детектора, скрытые переменные управляют не только фотоном, достигающим этого детектора, но и его далеким партнером. Скрытые переменные способны действовать нелокально. Теорема Белла разрушает догму локальных причины и следствия, принятую в классической физике. Даже если вводить скрытые переменные, чтобы найти причинную интерпретацию квантовой механики, как это делает Дэвид Бом, эти скрытые переменные должны быть нелокальными.
Дэвид Бом сравнивает эксперимент Аспекта с видением рыбки на двух разных экранах двух телевизоров. Что бы ни делала одна рыбка, делает и другая. Если считать изображения рыбки первичной реальностью, это кажется странным, но с точки зрения «реальной» рыбки, все очень просто.
Читать дальше