Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира

Здесь есть возможность читать онлайн «Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2009, ISBN: 2009, Издательство: КоЛибри, Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

E=mc2. Биография самого знаменитого уравнения мира: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «E=mc2. Биография самого знаменитого уравнения мира»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1905 году, выведя свое знаменитое уравнение Е=mc
, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.

E=mc2. Биография самого знаменитого уравнения мира — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «E=mc2. Биография самого знаменитого уравнения мира», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Какое воздействие оказало на Вольтера наблюдение за ломавшей над этими вопросами голову дю Шатле? Он получал постоянные напоминания о контрасте между огромной вселенной и маленьким «атомом грязи», на котором обитают тщеславные человеческие существа, — и это стало основной темой его сочинений. Постоянно напоминали ему и о необходимости предоставлять индивидуальному гению свободу действий — тема, которую жизнь с утомительной и упоительной дю Шатле несомненно усиливала.

С. 39 Виллем Гравезанд: Я рассказываю об обширных опытах Гравезанда упрощенно: он использовал имевшие форму пули цилиндры из словной кости, полые и сплошные медные шары, маятники, тщательно подготовленную и очищенную глину, помещавшуюся в специальные рамы, и множество иных отдающих Лапутией хитроумных приспособлений — и все это ради обоснования своей убежденности в том, что «Свойства Тела не могут быть известными à priori [52] Заранее, до опыта ( лат .) и потому нам должно исследовать само Тело и хорошо вникать во все его Свойства…». См. его (прекраснейшим образом иллюстрированные) «Mathematical Elements of Natural Philosophy, Confirm'd by Experiments» [53] «Математические элементы натуральной философии, подтвержденные опытами» ( англ .). , пер… J. T. Desaguilliers, в особенности, Book II, ch. 3, 6th edition (London: 1747); цитата взята со С. iv.

С. 40 «в этом нашем упоительном прибежище»: «Мемуары» Вольтера; в книге Edwards, «The Divine Mistress», p. 86.

С. 40 «Я беременна…»: Письмо к мадам де Буффлер от 3 апреля 1749. В «Les lettres de La Marquise du Châtelet» [54] «Письма маркизы дю Шаттле» ( франц .). , vol. 2, ред. T. Besterman (Geneva: Institut et Musee Voltaire, 1958), p. 247.

С. 40 «Я потерял половину себя самого…»: Письмо Вольтера к д’Аргеннталь, см., например, в Frank Hamel, «An Eighteenth-Century Marquise» [55] «Маркиз восемнадцатого столетия» ( англ .). (London: Stanley Paul amp; Co., 1910), p. 369.

С. 41 Автомобиль, который движется в четыре раза быстрее другого…: При скорости в 30 км/час машину обдувает ласковый ветерок, однако при 300 км/час это уже не ветер а катастрофа, он напоминает скорее ударную волну, возникающую при взрыве газовой печки. И мощнее он не в 10 раз, поскольку энергии несет в 10 2, или в 100 раз больше. Именно поэтому реактивные лайнеры летают на таких больших высотах. Только разреженный воздух этих высот и позволяет самолету проводить, не повреждаясь, часы под штормовым ветром, дующим ему на встречу со скоростью, которая превышает 960 км/час.

Спортсменам постоянно приходится производить сложные расчеты подобного рода. Бросить мяч так, чтобы он летел со скоростью 30 км/час, может любой школьник, но только профессиональные спортсмены способны придавать ему скорость в 150 км/час. Скорость эта «всего» в пять раз выше, но, поскольку энергия зависит от квадрата скорости (E = mv 2), энергетические затраты спортсмена возрастают в 25 раз. Более того, ему приходится затрачивать на это лишь 1/ 5-ю времени. (Потому что, если его бросок займет столько же времени, сколько занимает он у ребенка, мяч полетит со скоростью 30 км/час.) А создание 25-кратной энергии за 1/ 5-ю времени требует усилия, в 25х5, или в 125 раз большего! И кое-какие иные эффекты, например, сопротивление воздуха, эту задачу лишь усложняют. Правда, взрослому спортсмену помогает то, что рука у него длиннее, чем у ребенка.

С. 41 …выявляются лишь с помощью mv 2: Дело не в том, что mv 2«истинно», а mv 1- нет. Ньютоновская концепция импульса — mv 1- оказывается совершенно необходимой для понимания вселенной. Дело, скорее, в том, что каждое из этих определений относится к разным областям — разным сторонам — рассматриваемых нами явлений. Выстрелите из ружья — для наилучшего понимания отдачи требуется mv 1; а вот удар пули описывается с помощью mv 2.Сразу после нажатия на курок ружье и пуля получают равные импульсы, однако отдача ружья убить вас не может — бóльшая часть кинетической энергии ружья определяется его массой, и потому скорость его движения при отдаче на стрелка воздействует незначительно. Зато пуля обладает массой столь малой, что обладание тем же импульсом требует большой скорости. Степень же опасности пули для мишени определяется квадратом ее скорости — кинетической энергией пули.

С. 41 Это, разумеется, никакое не доказательство…: Это один из моментов, подробно обсуждаемых на моем веб-сайте.

С. 41 Как раз огромный коэффициент преобразования… стоящий в уравнении знак равенства: Если бы полное преобразование массы в энергию происходило слишком легко, наши карандаши и ручки начали бы исчезать, испуская ослепительные вспышки света, и унесли бы с собой большинство земных городов, а большая часть физической вселенной вскоре просто перестала бы существовать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «E=mc2. Биография самого знаменитого уравнения мира»

Представляем Вашему вниманию похожие книги на «E=mc2. Биография самого знаменитого уравнения мира» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «E=mc2. Биография самого знаменитого уравнения мира»

Обсуждение, отзывы о книге «E=mc2. Биография самого знаменитого уравнения мира» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x