Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира

Здесь есть возможность читать онлайн «Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2009, ISBN: 2009, Издательство: КоЛибри, Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

E=mc2. Биография самого знаменитого уравнения мира: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «E=mc2. Биография самого знаменитого уравнения мира»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1905 году, выведя свое знаменитое уравнение Е=mc
, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.

E=mc2. Биография самого знаменитого уравнения мира — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «E=mc2. Биография самого знаменитого уравнения мира», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И тут оказались совершенно незаменимыми те самые беженцы, к которым с таким презрением относился Бриггс. Юджин Вигнер, к примеру, представлял собой на редкость спокойного, непритязательного молодого венгра, происходившего из столь же спокойной, непритязательной семьи. Когда разразилась Первая мировая война, отец Юджина воздержался от участия в политических дискуссиях, вполне благоразумно указав на то, что мнения семьи Вигнеров вряд ли способны поколебать императора. И эта же осторожность привела к тому, что, когда Юджин, великолепно закончив школу, оказался перед выбором университетского факультета, отец настоял на том, чтобы он стал инженером-практиком, поскольку шансы сделать успешную карьеру в теоретической физике были до крайности малыми.

После того, как в 1930-х Вигнера изгнали из Европы, он добился успеха в качестве физика и, в конце концов, стал центральной фигурой среди тех, кто повторял в Америке расчеты Гейзенберга, детально показывая, как могла бы начаться реакция. Однако инженерное образование Вигнера означало, что справиться с последовательными шагами этих расчетов он был способен намного лучше Гейзенберга. Какую, к примеру, форму должен иметь уран, помещаемый внутрь реактора? Наиболее эффективной оказалась форма сферическая. В ее случае, в центре сферы возникало максимальное число нейтронов. Если же изготовление точной сферы окажется затруднительным, следующим по эффективности будет овал. За овалом следует цилиндр, потом куб и, наконец, — на самый худой конец, — можно попытаться создать реактор, используя урановые пластины.

Гейзенберг для своего лейпцигского устройства именно пластины и выбрал. Причина состояла попросту в том, что расчет свойств плоских поверхностей сопряжен с наименьшими трудностями, — если вы руководствуетесь чистой теорией. Однако инженеры, обладающие достаточным практическим опытом, чистой теорией никогда не ограничиваются. В их распоряжении имеется многое множество неформальных приемов, позволяющих судить о том, как поведут себя овалы и иные геометрические фигуры. Вигнер эти приемы знал, как знали их и многие другие беженцы, которым осторожные родители также присоветовали стать инженерами. Гейзенберг их не знал. И это оказалось до крайности важным. Профессора и вообще-то склонны к поддержанию строгой иерархии, а немецкие профессора тех времен, что предшествовали Второй мировой войне, были к тому же людьми, донельзя уверенными в себе. В ходе войны немалое число молодых немецких ученых обнаруживало, что Гейзенберг совершает одну техническую ошибку за другой. Однако он почти всегда отказывался выслушивать их, гневался и норовил добиться того, чтобы никто на этот счет и рта открыть не посмел.

И все же, уверенности в том, что Соединенные Штаты смогут победить в гонке, призом которой было создание бомбы, не питал никто. Америка только-только вышла из Великой депрессии, большая часть ее индустриальной базы все еще ржавела, пребывая в заброшенном состоянии. Когда Гейзенберг приступил к своим исследованиям в области вооружений, Вермахт обладал самыми мощными в мире боевыми силами. И все его армии были оснащены оружием, превосходившим то, что имелось в распоряжении любой другой страны. Соединенные же Штаты обладали армией, технического оснащения которой, даже с учетом устаревших на одно поколение артефактов времен Первой мировой войны, едва хватило бы на две дивизии, — в мировой иерархии эта армия занимала десятое место и стояла примерно на том же уровне, что армия Бельгии.

Кроме того, у Германии имелись лучшие в мире инженеры и сильная система университетов — даже после того, как из нее изгнали большое количество евреев, — и самое главное, у нее имелась фора: два драгоценных года, в течение которых Гейзенберг и его коллеги работали не покладая рук, а Бриггс предавался размышлениям за своим письменным столом. Таковы были капризы судьбы, которым и предстояло определить, кто сможет использовать уравнение Эйнштейна первым. Теперь E=mc 2представляло собой не просто набор эйнштейновских символов. Союзникам следовало поторопиться.

А немцев следовало притормозить.

Глава 11. Норвегия

Британская разведка, с самого начала следившая за осуществлением немецкой программы, смогла отыскать в ней только одно слабое место. Им не был уран — запасы этого металла в Бельгии были так велики, что попытка уничтожить его, а к нему нужно было еще подобраться, не имела смысла. Не был им и сам Гейзенберг — никакая диверсионная группа не сумела бы покончить с ним ни в Лейпциге, ни в Берлине, ни даже в летнем доме, которым его семья владела в Баварских Альпах: дом этот стоял в самой глубине Германии да, к тому же, наверняка находился под усиленной охраной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «E=mc2. Биография самого знаменитого уравнения мира»

Представляем Вашему вниманию похожие книги на «E=mc2. Биография самого знаменитого уравнения мира» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «E=mc2. Биография самого знаменитого уравнения мира»

Обсуждение, отзывы о книге «E=mc2. Биография самого знаменитого уравнения мира» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x