Из приведенных писем видно, какое большое значение Лев Давидович придавал владению математической техникой. Степень этого владения должна быть такой, чтобы математические затруднения по возможности не отвлекали внимания теоретика от физических трудностей задачи — по крайней мере там, где речь идет о стандартных математических приемах. Это может быть достигнуто лишь достаточной тренировкой. Между тем опыт показывает, что существующий стиль программы университетского образования физиков часто не обеспечивает такой тренировки. Опыт показывает также, что изучение математики после того, как физик начинает самостоятельную исследовательскую деятельность, оказывается для него слишком «скучным». Поэтому первое, чему Лев Давидович подвергал всякого экзаменующегося, было испытание по математике в ее «практических», вычислительных аспектах. Требовалось: умение взять любой неопределенный интеграл (выражающийся через элементарные функции) и решить любое обыкновенное дифференциальное уравнение стандартного типа, знание векторного анализа и тензорной алгебры; во второй экзамен по математике входили основы теории функций комплексного переменного (теория вычетов, метод Лапласа). Предполагалось при этом, что такие разделы, как тензорный анализ, теория групп и т. д., будут изучены вместе с теми разделами теоретической физики, где они находят себе применение.
Взгляды Льва Давидовича на математическое образование физиков с большой ясностью высказаны им в ответ на просьбу сообщить свое мнение о программах по математике в одном из физических вузов. С присущей ему прямотой он проводит мысль о том, что эти программы должны составляться с полным учетом требований физических кафедр — тех, кто по своему повседневному опыту научной работы в физике знает, что для этой работы требуется. Он пишет:
К сожалению, Ваши программы страдают теми же недостатками, какими обычно страдают программы по математике, превращающие изучение математики физиками наполовину в утомительную трату времени. При всей важности математики для физиков физики, как известно, нуждаются в считающей аналитической математике; математики же, по непонятной мне причине, подсовывают нам в качестве принудительного ассортимента логические упражнения. В данной программе это прямо подчеркнуто в виде особого примечания в начале программы. Мне кажется, что давно пора обучать физиков тому, что они сами считают нужным для себя, а не спасать их души вопреки их собственному желанию. Мне не хочется дискутировать с достойной средневековой схоластики мыслью, что путем изучения ненужных им вещей люди будто бы научаются логически мыслить.
Я категорически считаю, что из математики, изучаемой физиками, должны быть полностью изгнаны всякие теоремы существования, слишком строгие доказательства и т. п. Поэтому я не буду отдельно останавливаться на многочисленных пунктах Вашей программы, резко противоречащих этой точке зрения. Сделаю только некоторые дополнительные замечания.
Векторный анализ расположен в программе между кратными интегралами. Я не имею чего-либо против такого сочетания, однако надеюсь, что оно не идет в ущерб крайне необходимому формальному знанию формул векторного анализа.
Программа по рядам особенно перегружена ненужными вещами, в которых тонут те немногие полезные сведения, которые совершенно необходимо знать о ряде и интеграле Фурье.
Курс так называемой математической физики я считал бы правильным сделать факультативным. Нельзя требовать от физиков-экспериментаторов умения владеть этими вещами.
Необходимость в курсе теории вероятностей довольно сомнительна. Физики и без того излагают то, что им нужно, в курсах квантовой механики и статистической физики.
Таким образом, я считаю, что преподавание математики нуждается в серьезнейшей реформе. Те, кто возьмется за это важное и трудное дело, заслужат искреннюю благодарность как уже готовых физиков, так и в особенности многочисленных будущих поколений.
Глубоко интересуясь в течение всей своей жизни вопросами преподавания, Лев Давидович мечтал написать книги по физике на всех уровнях — от школьных учебников до курса теоретической физики для специалистов. Фактически при его жизни были закончены почти все тома «Теоретической физики» [2] Написана в соавторстве с Е. М. Лифшицем; в 1962 году удостоена Ленинской премии. — Прим. ред.
и первые тома «Курса общей физики» и «Физики для всех»; уже после его смерти началось издание составленного по его идее «Краткого курса теоретической физики». Он строил также планы составления учебников по математике для физиков, которые должны были быть в соответствии с его взглядами «руководством к действию», обучать практическому применению математики в физике.
Читать дальше