Впервые летчики почувствовали неладное в конструктивных формах довоенных самолетов при полетах с большой дозвуковой скоростью. Она достигалась при крутом пикировании и в тех случаях, когда использовались ракетные ускорители. В этот момент с самолетом начинали происходить странные и опасные явления: он трудно поддавался управлению, а то и совсем выходил из-под контроля летчика.
Стало ясно, что нельзя безнаказанно увеличивать скорость полета, устанавливая на самолетах все более мощные двигатели, пока не будет определена физическая причина этих и других непонятных явлений. Почему еще в дозвуковом полете самолет вдруг начинает испытывать какое-то дополнительное и очень большое сопротивление? И почему он при этом становится неуправляемым? За выяснение этой загадочной картины взялись ученые-аэродинамики.
Надо сказать, что в механике, в этом старейшем разделе физики, за последние десятилетия очень сильно развилась аэродинамика — наука о движении воздуха. С тех пор как Н. Е. Жуковский разгадал тайну птичьего крыла и объяснил механизм образования его поистине чудодейственной подъемной силы, которая затем помогла поднять в небо аппараты намного тяжелее воздуха, ученые немало сделали для развития авиации. Не одна научная проблема, важная для практики, была решена ими. И вот теперь предстояло решить новую.
Были созданы специальные аэродинамические трубы с большими дозвуковыми и сверхзвуковыми скоростями потока. В них подверглась тщательному исследованию модели самолетов различной формы. В результате множества опытов было установлено, что при обтекании околозвуковым потоком модели самолета с толстым крылом большого удлинения (то есть имеющего большое отношение размаха крыла к хорде или, попросту говоря, ширине) около поверхности машины образуются обширные зобы со сверхзвуковой скоростью потока. В конце этих зон возникают сильные ударные волны, которые и оказываются источником большого дополнительного сопротивления, названного поэтому «волновым».
Похожие результаты ученые получили и при сверхзвуковых скоростях потока в трубе, если модель самолета имела тупую носовую часть и крылья были установлены под большим углом (так называемым углом атаки) к направлению потока. Более простыми оказались течения воздуха около тонких тел с заостренной носовой частью и около тонких крыльев с острой передней кромкой и малыми углами атаки.
Таким образом, было установлено, что обычные прямые крылья большого удлинения и большой относительной толщины (по отношению к ширине крыла), очень хорошие при малых скоростях полета, совершенно непригодны для самолетов с большими дозвуковыми и сверхзвуковыми скоростями. Слишком велико их волновое сопротивление. Кроме того, при переходе к большим дозвуковым скоростям полета (вспомним пикирование) происходит резкое перераспределение давления воздушного потока на поверхности самолета, что сразу же ухудшает его управляемость и даже может вывести из повиновения летчику.
Этими недостатками, как выяснилось, почти не страдают тонкие стреловидные или треугольные крылья с малым удлинением. И чем большая предполагалась максимальная скорость самолета, тем большим должен был быть угол стреловидности, меньше удлинение и относительная толщина крыла. Так самолеты-цапли стали самолетами-ласточками, а точнее — застывшим изображением птиц в самой выгодной для данной скорости полета форме. Однако этой внешней аналогии не стоит придавать большого значения: ведь самой быстрой птице не угнаться за самым тихоходным самолетом, и тем более птицам никогда не узнать, что такое волновое сопротивление, рожденное сверхзвуковыми скоростями.
Итак, благодаря могучим современным двигателям и найденной совершенной форме крыла скорости самолетов на сегодня перевалили рубеж 3 тыс. км/час. А как будет дальше? Конечно, скорости будут расти, ведь техника не может стоять на месте, жизнь требует новых, более быстроходных самолетов. Ученые — аэродинамики и термодинамики — с уверенностью говорят, что наука уже дала ответ на то, какие скорости полета в авиации могут быть освоены в недалеком будущем. Называют цифры, превышающие скорость звука в 10–12 раз! Такие скорости длительного и экономичного полета в атмосфере могут дать в будущем, как считают зарубежные специалисты, прямоточные воздушно-реактивные двигатели.
Но одно дело наука, другое — практика. Пока что освоены скорости, равные только трем звуковым. Но уже при такой скорости появились проблемы, которые начинают всерьез волновать специалистов. Вот хотя бы посадка самолетов. Практика показывает, что с возрастанием максимальной скорости неизбежно увеличивается и посадочная. Сейчас она у некоторых самолетов стала превышать 250 км/час. Пришлось принимать специальные меры, чтобы обезопасить посадку. Однако, по мнению зарубежных специалистов, ни удлинение посадочных полос, ни использование тормозных парашютов не сняло определенной тревоги за каждый самолет, идущий на посадку с большой скоростью. Режим посадки находится уже на грани аварийного. Каков же выход из этого положения?
Читать дальше