Но внешность обманчива. STAIR способен на большее. В него, в отличие от детройтских роботов, не заложен жесткий сценарий. Он действует сам по себе. Если вы, к примеру, попросите робота взять апельсин, то он проанализирует лежащие на столе предметы, сравнит их с тысячами изображений, заранее заложенных в его память, узнает апельсин и поднимет его со стола своей механической рукой. Кроме того, он способен идентифицировать предмет более точно, если возьмет в руку и будет поворачивать и рассматривать со всех сторон.
Чтобы проверить возможности STAIR, я перемешал предметы на столе и посмотрел, как робот будет действовать. STAIR корректно проанализировал новое расположение предметов, протянул руку и взял то, что я попросил. Создатели этого робота ставят перед собой цель научить его свободно передвигаться в доме или офисе, брать различные предметы, взаимодействовать с различными объектами и инструментами и даже разговаривать с людьми на упрощенном языке. Если это удастся, робот будет способен выполнять практически все функции, которые выполняет в офисе мальчик на побегушках. STAIR — образец подхода «сверху вниз»: все его действия запрограммированы от начала и до конца. (Хотя STAIR может распознавать предметы под разными углами, но количество предметов, которые он вообще способен распознать, пока ограничено. Окажись такой робот на улице в окружении случайных объектов, он будет мгновенно парализован.)
Позже у меня появилась возможность посетить Нью-Йоркский университет, где Янн ЛеКун (Yann LeCun) экспериментирует с совершенно другим созданием. Его робот носит имя LAGR (Learning applied to ground robots — обучение в приложении к наземным роботам) и представляет собой образец подхода «снизу вверх»: ему приходится учиться всему с нуля, натыкаясь на самые разные предметы. LAGR — робот размером с маленький гольф-мобильчик, оборудованный двумя цветными стереокамерами; он постоянно сканирует ландшафт и распознает встречающиеся предметы. После этого он начинает двигаться среди этих предметов, старательно их объезжая и узнавая что-то новое с каждым проездом. Робот оборудован GPS-приемником и имеет два инфракрасных датчика, способные засекать предметы на его пути. Он содержит три мощных процессора Pentium и подсоединен к гигабитной сети Ethernet. Мы с роботом отправились гулять по близлежащему парку, где LAGR учился объезжать возникающие на его пути помехи. Каждый раз, проходя маршрут, он приобретал новую сноровку и учился лучше обходить препятствия.
Между LAGR и STAIR есть очень важное различие, состоящее в том, что LAGR специально разработан для самообучения. Каждый раз, наталкиваясь на какое-то препятствие, он объезжает вокруг этого объекта и учится узнавать и миновать его, чтобы в следующий раз не натолкнуться. Если в памяти STAIR хранятся изображения тысяч предметов, то в памяти LAGR нет практически никаких изображений; вместо этого робот создает как бы мысленную карту всех встреченных препятствий и на каждом проходе обновляет и уточняет ее. В отличие от автомобиля-робота, который жестко запрограммирован и движется по маршруту, заранее проложенному для него при помощи системы GPS, LAGR движется совершенно самостоятельно, без всяких указаний со стороны человека. Вы говорите ему, куда двигаться, и он пускается в путь. Со временем подобных роботов можно будет обнаружить на Марсе, на поле боя и в наших жилищах.
Энтузиазм и энергия этих исследователей произвели на меня сильное впечатление. Сами они глубоко убеждены, что закладывают основы искусственного интеллекта и что когда-нибудь результаты их работы вызовут в обществе глобальные изменения, которые человечество сегодня только начинает осознавать. Но взгляд со стороны позволил мне увидеть, как далеко им еще до успеха. Даже тараканы способны распознавать предметы и учиться обходить их. Мы же пока находимся на той стадии, когда даже самые примитивные из созданий матери-природы способны победить в состязании с нашими самыми умными роботами.
Ближайшее будущее
(с настоящего момента до 2030 г.)
Сегодня во многих домах уже появились простые роботы, предназначенные для чистки ковров. Существуют также роботы-охранники, патрулирующие здания по ночам, роботы-экскурсоводы и роботы-рабочие. В 2006 г. было примерно подсчитано, что в мире существует 950 000 промышленных роботов, а в домах и офисах работает 3 540 000 обслуживающих роботов. В ближайшие десятилетия робототехника будет развиваться в нескольких направлениях, возможно неожиданных, но новые роботы не будут похожи на тех, что знакомы нам по научной фантастике.
Читать дальше
Конец ознакомительного отрывка
Купить книгу