Не увели ли нас предположения и упрощения далеко в сторону от тех реальных условий, в которых колеблется реальный атом в узле реальной кристаллической решетки? Кажется, не увели. Пружинка удачно моделирует наличие силы притяжения (когда она растянута) и силы отталкивания (когда она сжата). Грузик хорошо моделирует атом, так как в нашей задаче, если силы заданы, от атома требуется лишь иметь определенную массу, а грузик ее имеет. А то, что в избранной модели колебания происходят вдоль прямой, существа дела практически не искажает, так как более сложное колебание можно представить в виде суммы прямолинейных, — этой возможностью мы уже пользовались, когда, объясняя открытие Дюлонга и Пти, предполагали, что каждый из атомов участвует в трех прямолинейных колебаниях.
Определим вначале амплитуду колебаний атома. Потенциальная энергия W п колеблющегося грузика, очевидно, не должна зависеть от того, смещается он влево или вправо от своего среднего положения, когда пружина и не сжата, и не растянута. А это означает, что

где φ— постоянная величина, характеризующая упругие свойства пружины. Эта величина определяет силу, действующую на грузик со стороны пружины: F = — φх.
При максимальном отклонении колеблющегося атома от положения равновесия, т. е. при отклонении на величину амплитуды колебаний А , как мы уже знаем, вся энергия атома kТ будет запасена в виде потенциальной энергии. Это означает, что
φA 2 / 2 = kT
и, следовательно,
A = (2 kT / φ) 1/2
Полученная формула неприятна тем, что в нее входит неизвестная нам величина φ. Впрочем, ее нетрудно связать с известными характеристиками кристалла. Для этого левую и правую части формулы, которая определяет силу F , поделим на а 2 , где а — межатомное расстояние:
F/а 2 = - φ /а . x / а
Легко усмотреть, что F/a 2 — напряжение, действующее на атом, х/а — относительное смещение атома. Если оно невелико, последняя формула просто является записью закона Гука, а отношение φ/ а имеет смысл модуля упругости Е . Итак, φ = Еа , а амплитуда
A = (2 kT / Ea ) 1/2≈ T 1/2
Из нашего расчета следует, что амплитуда колебаний атома с температурой возрастает по закону T 1/2 . У металлов, для которых Е ≈ 10 12дин/см 2, а ≈ 3• 10 -8см, в области предплавильных температур амплитуда А ≈ 2 . 10 -9см и, следовательно, составляет несколько процентов от величины межатомного расстояния. Много это или мало? Конечно же, немного, если иметь в виду сохранение решетки как таковой, если заботиться о том, чтобы тепловые колебания не расшатали кристалл, лишив его порядка в расположении атомов. При найденной нами амплитуде колебаний атомов кристалл сохраняет свою индивидуальность, еще не теряет «черты кристалла».
Определим теперь период колебаний атома. Если иметь в виду лишь приближенную оценку, то сделать это совсем несложно. Когда вся тепловая энергия колеблющегося атома преобразована в его кинетическую энергию, атом движется с максимальной скоростью, которая следует из условия

Мы сделали грубое предположение, сочтя, что на протяжении всего периода колебаний атом движется с максимальной скоростью. Как выясняется, оно привело нас к потере численного множителя 2π. Точная формула выглядит так:

Мы получили результат, противоречащий интуиции: кажется странным, что период колебаний атома в решетке практически не зависит от температуры, разве что лишь в меру очень слабой температурной зависимости модуля упругости. Здесь следует подчеркнуть: не при всех температурах, а лишь при высоких температурах, когда вообще справедливо все то, что рассказано в очерке. Так как масса атома
m ≈ 10 -22грамм, то τ 0=10 -13- 10 -12с
Итак, мы оценили две фундаментальные характеристики движения атома в кристалле: амплитуду и период колебаний. Их значения свидетельствуют об очень активной жизнедеятельности атома: он за секунду, не меняя положения оседлости, совершает п = 1/ τ 0= 10 12— 10 13колебаний, проходя при этом путь протяженностью L = па = (10 12— 10 13)• 10 -9см = 10 3— 10 4см!
Читать дальше