ЕСТЬ ЛИ ПРОК В БЕСПОРЯДКЕ?
В шуточных стихах поэт четко выразил общепринятое отношение к интересующей нас проблеме «порядок — беспорядок»:
Порядок стихотворных строк
Люблю в своей тетрадке.
Я лишь в порядке вижу прок,
Не вижу — в беспорядке.
Так вот, с точки зрения кристалла поэт не прав, кристалл «видит» прок в беспорядке. Ему необходимы и порядок, и беспорядок одновременно. Утверждение немного курьезно, оно, однако, ничуть не искажает реальную ситуацию. Быть может, его следует лишь немного уточнить: кристаллу, который является воплощением и торжеством порядка, необходима некоторая доля беспорядка в расположении атомов. Беспорядок может проявлять себя в различных признаках, быть представленным в различной степени, — но обязан быть! — и, как выясняется, степень беспорядка с ростом температуры должна увеличиваться. Беспорядок — непременный признак жизни кристалла, а следовательно, прок в нем есть!
Вначале о происхождении порядка в кристалле, которое проще осмыслить, если предположить температуру кристалла равной нулю и мысленно избавиться от всяких признаков беспорядка. Упорядоченное расположение атомов в кристалле есть непосредственное следствие фундаментального закона природы: устойчивыми оказываются такие состояния, при которых энергия системы минимальна. В нашем случае «система» — это кристалл, а энергия — это сумма энергий взаимодействия между всеми парами атомов, составляющих кристалл. Среди прочих значений минимальная энергия выделена своей величиной, и среди прочих возможных расположений атомов ей должно соответствовать некоторое выделенное, т. е. упорядоченное, расположение атомов. Среди необозримого числа неупорядоченных расположений оно тем-то и выделено, что отличается порядком в расположении атомов. Какому расположению будет соответствовать порядок — неважно, а важно лишь то, что порядок! Не хаос, а порядок!

Изложенное немного туманное рассуждение можно прояснить, обсудив элементарную задачу о расположении атомов в кристалле, состоящем всего из трех одиночных атомов, находящихся на одной прямой и скрепленных одинаковыми пружинками. Этакая предельно упрощенная модель одномерного кристалла. Оказывается, что если первый и третий атомы закрепить, то пружинки, с помощью которых эти атомы взаимодействуют со вторым, будут обладать минимальной энергией в случае, когда второй атом расположен посредине между первым и третьим. Избранная упорядоченная структура, когда расстояние l 1,2 равно расстоянию l 2,3 , оказывается выгоднее любой «неупорядоченной», когда l 1,2 и l 2,3 не равны.
Решение этой задачи почти самоочевидно: сместить в одном и другом направлении второй атом из среднего положения, когда l 1,2 = l 2,3 — это значит растянуть одну пружинку и сжать другую. При этом энергия, запасенная в каждой из пружинок, возрастает, а это и означает, что расположение, соответствующее минимуму энергии, должно быть упорядоченным ( l 1,2 = l 2,3 !).
Теперь о происхождении беспорядка.
Вначале, не уточняя структуру очага беспорядка, можно утверждать: его появление обусловлено тем, что с повышением температуры увеличивается энергия теплового движения атомов, оно становится более активным и в разных участках кристалла нарушается идеальный порядок в расположении атомов. Казалось бы, ну и пусть себе движение становится более активным, а центры, вокруг которых происходят тепловые колебания атомов или ионов, могли бы оставаться на месте и порядок оставался бы порядком. Такое пожелание вроде бы ничему не противоречит, а, исполнись оно, порядок, как в стихотворных строках, на радость поэту, сохранился бы.
Наше интуитивное желание видеть в кристалле идеальный порядок, оказывается, противоречит законам природы. Не уверен, надо ли говорить «к сожалению», но противоречит. Дело здесь вот в чем. Для возникновения очага беспорядка — например, атом покинул свое законное место, которое он занимал в узле решетки, и перескочил в зазор между узлами, в междоузлие, — необходима некоторая энергия. В области будущего очага беспорядка она, заимствованная из энергии теплового движения атомов ближайшего окружения, может появиться случайно. Ближайшие атомы колеблются не строго согласованно, и случайное стечение обстоятельств может привести к такому перераспределению энергии их тепловых колебаний, при котором в области будущего очага беспорядка появится энергия, достаточная для рождения очага. Говорят так: появилась необходимая энергетическая флуктуация. С ростом температуры, когда активность теплового движения возрастает, должна возрастать и частота флуктуаций энергии, достаточной для возникновения очагов беспорядка, и, следовательно, концентрация очагов также должна расти.
Читать дальше